Advertisement

Neuroradiology

, Volume 52, Issue 6, pp 505–521 | Cite as

Magnetic resonance imaging of white matter diseases of prematurity

  • Mary A. RutherfordEmail author
  • Veena Supramaniam
  • Ashraf Ederies
  • Andrew Chew
  • Laura Bassi
  • Michela Groppo
  • Mustafa Anjari
  • Serena Counsell
  • Luca A. Ramenghi
Topic Article

Abstract

Periventricular leucomalacia (PVL) and parenchymal venous infarction complicating germinal matrix/intraventricular haemorrhage have long been recognised as the two significant white matter diseases responsible for the majority of cases of cerebral palsy in survivors of preterm birth. However, more recent studies using magnetic resonance imaging to assess the preterm brain have documented two new appearances, adding to the spectrum of white matter disease of prematurity: punctate white matter lesions, and diffuse excessive high signal intensity (DEHSI). These appear to be more common than PVL but less significant in terms of their impact on individual neurodevelopment. They may, however, be associated with later cognitive and behavioural disorders known to be common following preterm birth. It remains unclear whether PVL, punctate lesions, and DEHSI represent a continuum of disorders occurring as a result of a similar injurious process to the developing white matter. This review discusses the role of MR imaging in investigating these three disorders in terms of aetiology, pathology, and outcome.

Keywords

Magnetic resonance imaging Prematurity Brain White matter 

Abbreviations

DEHSI

diffuse excessive high signal intensity

DTI

diffusion tensor imaging

GA

gestational age

GMH

germinal matrix haemorrhage

IUGR

intrauterine growth restriction

IVH

intraventricular haemorrhage

PLIC

posterior limb of the internal capsule

PVL

periventricular leucomalacia

WM

white matter

Notes

Acknowledgements

We are grateful to The Medical Research Council, The European Leucodystrophy Association, Action Medical Research, Well Child, Philips Medical Systems, and the Biomedical Research Centre for supporting these studies.

Conflict of interest statement

We declare that we have no conflict of interest.

References

  1. 1.
    Cornette LG, Tanner SF, Ramenghi LA, Miall LS, Childs AM, Arthur RJ, Martinez D, Levene MI (2002) Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctuate lesions. Arch Dis Child Fetal Neonat Ed 86:F171–F177CrossRefGoogle Scholar
  2. 2.
    Maalouf EF, Duggan PJ, Rutherford MA, Counsell SJ, Fletcher AM, Battin M, Cowan F, Edwards AD (1999) Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 135:351–357CrossRefPubMedGoogle Scholar
  3. 3.
    Volpe JJ (2003) Cerebral white matter injury of the premature infant—more common than you think. Pediatrics 112:176–180CrossRefPubMedGoogle Scholar
  4. 4.
    Back SA, Riddle A, Hohimer AR (2006) Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white-matter injury [review]. J Child Neurol 21:582–589CrossRefPubMedGoogle Scholar
  5. 5.
    Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, Harrison M, Allsop JM, Hajnal J, Herlihy AH, Edwards B, Laroche S, Cowan FM, Rutherford MA, Edwards AD (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118:536–548CrossRefPubMedGoogle Scholar
  6. 6.
    Felderhoff-Mueser U, Rutherford MA, Squier WV, Cox P, Maalouf EF, Counsell SJ, Bydder GM, Edwards AD (1999) Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants. AJNR Am J Neuroradiol 20:1349–1357PubMedGoogle Scholar
  7. 7.
    Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, LaGamma E, Ballabh P (2008) Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke 39:3378–3388CrossRefPubMedGoogle Scholar
  8. 8.
    Supramaniam VG, Srinivasan L, Doherty K, Wyatt-Ashmead J, Rutherford M (2010) The distribution and morphology of microglial (MG) cells in the periventricular white matter (PVWM) of immature human brain. Pediatric Academic Societies. Vancouver, Canada. Abstract number 751547Google Scholar
  9. 9.
    Counsell SJ, Dyet LE, Larkman DJ, Nunes RG, Boardman JP, Allsop JM, Fitzpatrick J, Srinivasan L, Cowan FM, Hajnal JV, Rutherford MA, Edwards AD (2007) Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage 34(3):896–904CrossRefPubMedGoogle Scholar
  10. 10.
    Whitelaw A, Jary S, Kmita G, Wroblewska J, Musialik-Swietlinska E, Mandera M, Hunt L, Carter M, Pople I (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Paediatrics (in press)Google Scholar
  11. 11.
    De Carli A, Jary S, Ramenghi L, Rutherford M, Whitelaw A (2010) Magnetic Resonance Imaging (MRI) at Term equivalent age correlates with neurodevelopment at 2 years in preterm infants with post-hemorrhagic ventricular dilatation. Abstract number 753508, Pediatric Academic Societies’ Annual MeetingGoogle Scholar
  12. 12.
    Judas M, Rados M, Jovanov-Milosevic N, Hrabac P, Stern-Padovan R, Kostovic I (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. Am J Neuroradiol 26:2671–2684PubMedGoogle Scholar
  13. 13.
    Dommergues MA, Plaisant F, Verney C, Gressens P (2003) Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121:619–628CrossRefPubMedGoogle Scholar
  14. 14.
    Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, Allsop JM, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386CrossRefPubMedGoogle Scholar
  15. 15.
    De Vries LS, Van Haastert IL, Rademaker KJ, Koopman C, Groenendaal F (2004) Ultrasound abnormalitiespreceding cerebral palsy in high-risk preterm infants. J Pediatr 144:815–820PubMedGoogle Scholar
  16. 16.
    Cowan F, De Vries L (2005) The internal capsule in neonatal imaging. Semin Fetal Neonat Med 10:461–474Google Scholar
  17. 17.
    Ricci D, Anker S, Cowan F, Pane M, Gallini F, Luciano R, Donvito V, Baranello G, Cesarini L, Bianco F, Rutherford M, Romagnoli C, Atkinson J, Braddick O, Guzzetta F, Mercuri E (2006) Thalamic atrophy in infants with PVL and cerebral visual impairment. Early Hum Dev 82:591–595, Pediatr. Res. 61, 153–115CrossRefPubMedGoogle Scholar
  18. 18.
    Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760CrossRefPubMedGoogle Scholar
  19. 19.
    Pierson CR, Folkerth RD, Billiards SS, Trachtenberg FL, Drinkwater ME, Volpe JJ, Kinney HC (2007) Gray matter injury associated with periventricular leucomalacia in the premature infant. Acta Neuropathol (Berl) 114:619–631CrossRefGoogle Scholar
  20. 20.
    Nagae LM, Hoon AH Jr, Stashinko E, Lin D, Zhang W, Levey E, Wakana S, Jiang H, Leite CC, Lucato LT, van Zijl PC, Johnston MV, Mori S (2007) Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. AJNR Am J Neuroradiol 28(7):1213–1222CrossRefPubMedGoogle Scholar
  21. 21.
    Miller SP, McQuillen PS (2007) Neurology of congenital heart disease: insight from brain imaging. Arch Dis Child Fetal Neonat Ed 92:F435–F437CrossRefGoogle Scholar
  22. 22.
    Childs AM, Cornette L, Ramenghi LA, Tanner SF, Arthur RJ, Martinez D, Levene MI (2001) Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 56(8):647–655CrossRefPubMedGoogle Scholar
  23. 23.
    Ramenghi LA, Fumagalli M, Righini A, Bassi L, Groppo M, Parazzini C, Bianchini E, Triulzi F, Mosca F (2007) Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 49:161–167CrossRefPubMedGoogle Scholar
  24. 24.
    Bassi L, Ricci D, Volzone A, Allsop JM, Srinivasan L, Pai A, Ribes C, Ramenghi LA, Mercuri E, Mosca F, Edwards AD, Cowan FM, Rutherford MA, Counsell SJ (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131(Pt 2):573–582CrossRefPubMedGoogle Scholar
  25. 25.
    Baud O, Daire JL, Dalmaz Y, Fontaine RH, Krueger RC, Sebag G, Evrard P, Gressens P, Verney C (2004) Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leucomalacia. Brain Pathol 14:1–10PubMedCrossRefGoogle Scholar
  26. 26.
    Anjari M, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA, Edwards AD, Counsell SJ (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 15: 35(3):1021-1027Google Scholar
  27. 27.
    Anjari M, Counsell SJ, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA, Edwards AD (2009) The association of lung disease with cerebral white matter abnormalities in preterm infants. Pediatrics 124(1):268–276CrossRefPubMedGoogle Scholar
  28. 28.
    Counsell SJ, Edwards AD, Chew AT, Anjari M, Dyet LE, Srinivasan L, Boardman JP, Allsop JM, Hajnal JV, Rutherford MA, Cowan FM (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131(Pt 12):3201–3208CrossRefPubMedGoogle Scholar
  29. 29.
    Boardman JP, Counsell SJ, Rueckert D, Kapellou O, Bhatia KK, Aljabar P, Hajnal J, Allsop JM, Rutherford MA, Edwards AD (2006) Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. Neuroimage 32:70–78CrossRefPubMedGoogle Scholar
  30. 30.
    Srinivasan L, Dutta R, Counsell SJ, Allsop JM, Boardman JP, Rutherford MA, Edwards AD (2007) Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 119:759–765CrossRefPubMedGoogle Scholar
  31. 31.
    Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR, for the EPICure Study Group (2005) The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonat Ed 90:F134–F140CrossRefGoogle Scholar
  32. 32.
    Krishnan ML, Dyet LE, Boardman JP, Kapellou O, Allsop JM, Cowan F, Edwards AD, Rutherford MA, Counsell SJ (2007) Relationship between white matter apparent diffusion coefficients in preterm infants at term-equivalent age and developmental outcome at 2 years. Pediatrics 120(3):e604–e609CrossRefPubMedGoogle Scholar
  33. 33.
    Ramenghi LA, Dessimone F, Bassi L, Fumagalli M, Rutherford M, Picciolini O, Gangi S, Gardon L, Presezzi G, De Carli A, Groppo M, Nordio F, Mosca F (2010) Conventional Magnetic Resonance (MRI) of the brain of Very Low Birth Weight infants (VLBW) and neurological outcome at 3 years of age. 2010 Abstract number 754618. PAS Annual MeetingGoogle Scholar
  34. 34.
    Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, Kjellmer I, Mallard C (2007) Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 61(2):153–158CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mary A. Rutherford
    • 1
    Email author
  • Veena Supramaniam
    • 1
  • Ashraf Ederies
    • 1
  • Andrew Chew
    • 1
  • Laura Bassi
    • 2
  • Michela Groppo
    • 2
  • Mustafa Anjari
    • 1
  • Serena Counsell
    • 1
  • Luca A. Ramenghi
    • 2
  1. 1.Robert Steiner MR Unit, MRC Clinical Sciences CentreImperial College, Hammersmith HospitalLondonUK
  2. 2.NICU, Institute of Pediatrics and Neonatology, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina ElenaUniversity of MilanMilanItaly

Personalised recommendations