Advertisement

Neuroradiology

, Volume 52, Issue 3, pp 215–223 | Cite as

MRI of the transverse and alar ligaments in rheumatoid arthritis: feasibility and relations to atlantoaxial subluxation and disease activity

  • Nils VettiEmail author
  • Rikke Alsing
  • Jostein Kråkenes
  • Jarle Rørvik
  • Nils Erik Gilhus
  • Johan Gorgas Brun
  • Ansgar Espeland
Diagnostic Neuroradiology

Abstract

Introduction

Dysfunctional transverse and alar craniovertebral ligaments can cause instability and osseous destruction in rheumatoid arthritis (RA). This study examined (1) the feasibility of high-resolution magnetic resonance imaging (MRI) of these ligaments in RA and (2) the relation between ligament high-signal changes and atlantoaxial subluxation and RA duration/severity.

Methods

Consecutive RA patients (n = 46) underwent clinical examination, functional radiography, and high-resolution MRI. Two blinded radiologists rated MRI image quality, graded ligament high-signal changes 0–3 on proton-weighted sequences using an existing grading system, and assessed cervical spine rheumatic changes on short tau inversion recovery images. Agreement was analyzed using kappa and relations using multiple logistic regression.

Results

MRI images had good quality in 42 (91.3%) of 46 patients and were interpretable in 44 (32 women and 12 men, median age/disease duration 60.4/9.1 years). MRI grades 2–3 changes of the transverse and alar ligaments showed moderate and good interobserver agreement (kappa 0.59 and 0.78), respectively, and prevalence 31.8% and 34.1%. Such ligament changes were more frequent with increasing anterior atlantoaxial subluxation (p = 0.012 transverse, p = 0.028 alar), higher erythrocyte sedimentation rate (p = 0.003 transverse), positive rheumatoid factor (p = 0.002 alar), and neck pain (p = 0.004 alar).

Conclusion

This first study of high-resolution MRI of these ligaments in RA showed high feasibility and relations with atlantoaxial subluxation, RA disease activity, and neck pain. The clinical usefulness of such MRI needs further evaluation.

Keywords

Alar ligament Transverse ligament Rheumatoid arthritis Magnetic resonance imaging Radiography 

Notes

Acknowledgments

GE Eide, Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway supervised the statistical analysis. The study received funding from Grieg Foundation and the Norwegian Foundation for Health and Rehabilitation.

Conflict of interest statement

We declare that we have no conflict of interest.

References

  1. 1.
    Dvorak J, Panjabi MM (1987) Functional anatomy of the alar ligaments. Spine 12:183–189CrossRefPubMedGoogle Scholar
  2. 2.
    Dvorak J, Schneider E, Saldinger P et al (1988) Biomechanics of the craniocervical region: the alar and transverse ligaments. J Orthop Res 6:452–461CrossRefPubMedGoogle Scholar
  3. 3.
    Saldinger P, Dvorak J, Rahn BA et al (1990) Histology of the alar and transverse ligaments. Spine 15:257–261CrossRefPubMedGoogle Scholar
  4. 4.
    Panjabi MM, Oxland TR, Parks EH (1991) Quantitative anatomy of cervical spine ligaments. Part I. Upper cervical spine. J Spinal Disord 4:270–276PubMedGoogle Scholar
  5. 5.
    Heller JG, Amrani J, Hutton WC (1993) Transverse ligament failure: a biomechanical study. J Spinal Disord 6:162–165PubMedGoogle Scholar
  6. 6.
    Panjabi M, Dvorak J, Crisco J III et al (1991) Flexion, extension, and lateral bending of the upper cervical spine in response to alar ligament transections. J Spinal Disord 4:157–167CrossRefPubMedGoogle Scholar
  7. 7.
    Puttlitz CM, Goel VK, Clark CR et al (2000) Biomechanical rationale for the pathology of rheumatoid arthritis in the craniovertebral junction. Spine 25:1607–1616CrossRefPubMedGoogle Scholar
  8. 8.
    Dvorak J, Panjabi M, Gerber M et al (1987) CT-functional diagnostics of the rotatory instability of upper cervical spine. 1. An experimental study on cadavers. Spine 12:197–205PubMedCrossRefGoogle Scholar
  9. 9.
    Fielding JW, Cochran GB, Lawsing JF III et al (1974) Tears of the transverse ligament of the atlas. A clinical and biomechanical study. J Bone Joint Surg Am 56:1683–1691PubMedGoogle Scholar
  10. 10.
    Roche CJ, Eyes BE, Whitehouse GH (2002) The rheumatoid cervical spine: signs of instability on plain cervical radiographs. Clin Radiol 57:241–249CrossRefPubMedGoogle Scholar
  11. 11.
    Guerassimov A, Zhang Y, Banerjee S et al (1998) Autoimmunity to cartilage link protein in patients with rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 25:1480–1484PubMedGoogle Scholar
  12. 12.
    Boszczyk AA, Boszczyk BM, Putz R et al (2003) Expression of a wide range of fibrocartilage molecules at the entheses of the alar ligaments—possible antigenic targets for rheumatoid arthritis? J Rheumatol 30:1420–1425PubMedGoogle Scholar
  13. 13.
    Milz S, Valassis G, Buttner A et al (2001) Fibrocartilage in the transverse ligament of the human acetabulum. J Anat 198:223–228CrossRefPubMedGoogle Scholar
  14. 14.
    O’Brien MF, Casey AT, Crockard A et al (2002) Histology of the craniocervical junction in chronic rheumatoid arthritis: a clinicopathologic analysis of 33 operative cases. Spine 27:2245–2254CrossRefPubMedGoogle Scholar
  15. 15.
    Dickman CA, Mamourian A, Sonntag VK et al (1991) Magnetic resonance imaging of the transverse atlantal ligament for the evaluation of atlantoaxial instability. J Neurosurg 75:221–227CrossRefPubMedGoogle Scholar
  16. 16.
    Krakenes J, Kaale BR (2006) Magnetic resonance imaging assessment of craniovertebral ligaments and membranes after whiplash trauma. Spine 31:2820–2826CrossRefPubMedGoogle Scholar
  17. 17.
    Baumert B, Wortler K, Steffinger D et al (2009) Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magn Reson Imaging. doi: 10.1016/j.mri.2009.01.012 PubMedGoogle Scholar
  18. 18.
    Roy S, Hol PK, Laerum LT et al (2004) Pitfalls of magnetic resonance imaging of alar ligament. Neuroradiology 46:392–398CrossRefPubMedGoogle Scholar
  19. 19.
    Myran R, Kvistad KA, Nygaard OP et al (2008) Magnetic resonance imaging assessment of the alar ligaments in whiplash injuries: a case-control study. Spine 33:2012–2016CrossRefPubMedGoogle Scholar
  20. 20.
    Vetti N, Krakenes J, Eide GE et al (2009) MRI of the alar and transverse ligaments in whiplash-associated disorders (WAD) grades 1-2: high-signal changes by age, gender, event and time since trauma. Neuroradiology 51:227–235CrossRefPubMedGoogle Scholar
  21. 21.
    Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324CrossRefPubMedGoogle Scholar
  22. 22.
    Prevoo ML, ’t Hof MA, Kuper HH et al (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48CrossRefPubMedGoogle Scholar
  23. 23.
    Pincus T, Summey JA, Soraci SA Jr et al (1983) Assessment of patient satisfaction in activities of daily living using a modified Stanford Health Assessment Questionnaire. Arthritis Rheum 26:1346–1353CrossRefPubMedGoogle Scholar
  24. 24.
    Bono CM, Vaccaro AR, Fehlings M et al (2007) Measurement techniques for upper cervical spine injuries: consensus statement of the Spine Trauma Study Group. Spine 32:593–600CrossRefPubMedGoogle Scholar
  25. 25.
    Westaway MD, Hu WY, Stratford PW et al (2005) Intra- and inter-rater reliability of the anterior atlantodental interval measurement from conventional lateral view flexion/extension radiographs. Man Ther 10:219–223CrossRefPubMedGoogle Scholar
  26. 26.
    Boden SD, Dodge LD, Bohlman HH et al (1993) Rheumatoid arthritis of the cervical spine. A long-term analysis with predictors of paralysis and recovery. J Bone Joint Surg Am 75:1282–1297PubMedGoogle Scholar
  27. 27.
    Kauppi M, Sakaguchi M, Konttinen YT et al (1990) A new method of screening for vertical atlantoaxial dislocation. J Rheumatol 17:167–172PubMedGoogle Scholar
  28. 28.
    Krakenes J, Kaale BR, Moen G et al (2002) MRI assessment of the alar ligaments in the late stage of whiplash injury—a study of structural abnormalities and observer agreement. Neuroradiology 44:617–624CrossRefPubMedGoogle Scholar
  29. 29.
    Ajmal M, O’Rourke SK (2005) Odontoid Lateral Mass Interval (OLMI) asymmetry and rotary subluxation: a retrospective study in cervical spine injury. J Surg Orthop Adv 14:23–26PubMedGoogle Scholar
  30. 30.
    Taniguchi D, Tokunaga D, Hase H et al (2008) Evaluation of lateral instability of the atlanto-axial joint in rheumatoid arthritis using dynamic open-mouth view radiographs. Clin Rheumatol 27:851–857CrossRefPubMedGoogle Scholar
  31. 31.
    Narvaez JA, Narvaez J, de Albert M et al (2009) Bone marrow edema in the cervical spine of symptomatic rheumatoid arthritis patients. Semin Arthritis Rheum 38:281–288CrossRefPubMedGoogle Scholar
  32. 32.
    Ostergaard M, Peterfy C, Conaghan P et al (2003) OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 30:1385–1386PubMedGoogle Scholar
  33. 33.
    Dadoniene J, Uhlig T, Stropuviene S et al (2003) Disease activity and health status in rheumatoid arthritis: a case-control comparison between Norway and Lithuania. Ann Rheum Dis 62:231–235CrossRefPubMedGoogle Scholar
  34. 34.
    Lurie JD, Tosteson AN, Tosteson TD et al (2008) Reliability of readings of magnetic resonance imaging features of lumbar spinal stenosis. Spine 33:1605–1610CrossRefPubMedGoogle Scholar
  35. 35.
    Umans H, Wimpfheimer O, Haramati N et al (1995) Diagnosis of partial tears of the anterior cruciate ligament of the knee: value of MR imaging. AJR Am J Roentgenol 165:893–897PubMedGoogle Scholar
  36. 36.
    van Rijn JC, Klemetso N, Reitsma JB et al (2005) Observer variation in MRI evaluation of patients suspected of lumbar disk herniation. AJR Am J Roentgenol 184:299–303PubMedGoogle Scholar
  37. 37.
    Pfirrmann CW, Binkert CA, Zanetti M et al (2001) MR morphology of alar ligaments and occipitoatlantoaxial joints: study in 50 asymptomatic subjects. Radiology 218:133–137PubMedGoogle Scholar
  38. 38.
    Winfield J, Cooke D, Brook AS et al (1981) A prospective study of the radiological changes in the cervical spine in early rheumatoid disease. Ann Rheum Dis 40:109–114CrossRefPubMedGoogle Scholar
  39. 39.
    Reijnierse M, Bloem JL, Dijkmans BA et al (1996) The cervical spine in rheumatoid arthritis: relationship between neurologic signs and morphology of MR imaging and radiographs. Skeletal Radiol 25:113–118CrossRefPubMedGoogle Scholar
  40. 40.
    Zikou AK, Argyropoulou MI, Alamanos Y et al (2005) Magnetic resonance imaging findings of the cervical spine in patients with rheumatoid arthritis. A cross-sectional study. Clin Exp Rheumatol 23:665–670PubMedGoogle Scholar
  41. 41.
    Krakenes J, Kaale BR, Nordli H et al (2003) MR analysis of the transverse ligament in the late stage of whiplash injury. Acta Radiol 44:637–644PubMedGoogle Scholar
  42. 42.
    Erickson SJ (1997) High-resolution imaging of the musculoskeletal system. Radiology 205:593–618PubMedGoogle Scholar
  43. 43.
    Panush D, Fulbright R, Sze G et al (1993) Inversion-recovery fast spin-echo MR imaging: efficacy in the evaluation of head and neck lesions. Radiology 187:421–426PubMedGoogle Scholar
  44. 44.
    Mikulowski P, Wollheim FA, Rotmil P et al (1975) Sudden death in rheumatoid arthritis with atlanto-axial dislocation. Acta Med Scand 198:445–451PubMedGoogle Scholar
  45. 45.
    Pettersson H, Larsson EM, Holtas S et al (1988) MR imaging of the cervical spine in rheumatoid arthritis. AJNR Am J Neuroradiol 9:573–577PubMedGoogle Scholar
  46. 46.
    Ostergaard M, Ejbjerg B, Szkudlarek M (2005) Imaging in early rheumatoid arthritis: roles of magnetic resonance imaging, ultrasonography, conventional radiography and computed tomography. Best Pract Res Clin Rheumatol 19:91–116CrossRefPubMedGoogle Scholar
  47. 47.
    Smith KL, Daniels JL, Arnoczky SP et al (1994) Effect of joint position and ligament tension on the MR signal intensity of the cruciate ligaments of the knee. J Magn Reson Imaging 4:819–822CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nils Vetti
    • 1
    • 2
    Email author
  • Rikke Alsing
    • 3
    • 4
  • Jostein Kråkenes
    • 1
    • 2
  • Jarle Rørvik
    • 1
    • 2
  • Nils Erik Gilhus
    • 5
    • 6
  • Johan Gorgas Brun
    • 3
    • 4
  • Ansgar Espeland
    • 1
    • 2
  1. 1.Department of RadiologyHaukeland University HospitalBergenNorway
  2. 2.Section for Radiology, Department of Surgical SciencesUniversity of BergenBergenNorway
  3. 3.Department of RheumatologyHaukeland University HospitalBergenNorway
  4. 4.Section for Rheumatology, Institute of MedicineUniversity of BergenBergenNorway
  5. 5.Department of NeurologyHaukeland University HospitalBergenNorway
  6. 6.Section for Neurology, Department of Clinical MedicineUniversity of BergenBergenNorway

Personalised recommendations