, Volume 50, Issue 11, pp 981–985 | Cite as

Diffusion tensor analysis of corpus callosum in progressive supranuclear palsy

  • Shoichi Ito
  • Takahiro Makino
  • Wakako Shirai
  • Takamichi Hattori
Functional Neuroradiology



Progressive supranuclear palsy (PSP) is a neurodegenerative disease featuring parkinsonism, supranuclear ophthalmoplegia, dysphagia, and frontal lobe dysfunction. The corpus callosum which consists of many commissure fibers probably reflects cerebral cortical function. Several previous reports showed atrophy or diffusion abnormalities of anterior corpus callosum in PSP patients, but partitioning method used in these studies was based on data obtained in nonhuman primates. In this study, we performed a diffusion tensor analysis using a new partitioning method for the human corpus callosum.


Seven consecutive patients with PSP were compared with 29 age-matched patients with Parkinson’s Disease (PD) and 19 age-matched healthy control subjects. All subjects underwent diffusion tensor magnetic resonance imaging, and the corpus callosum was partitioned into five areas on the mid-sagittal plane according to a recently established topography of human corpus callosum (CC1—prefrontal area, CC2—premotor and supplementary motor area, CC3—motor area, CC4—sensory area, CC5—parietal, temporal, and occipital area). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in each area and differences between groups were analyzed.


In the PSP group, FA values were significantly decreased in CC1 and CC2, and ADC values were significantly increased in CC1 and CC2. Receiver operating characteristic analysis showed excellent reliability of FA and ADC analyses of CC1 for differentiating PSP from PD.


The anterior corpus callosum corresponding to the prefrontal, premotor, and supplementary motor cortices is affected in PSP patients. This analysis can be an additional test for further confirmation of the diagnosis of PSP.


Progressive supranuclear palsy Diffusion tensor imaging Corpus callosum 


Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Gröschel K, Hauser TK, Luft A, Patronas N, Dichgans J, Litvan I et al (2004) Magnetic resonance imaging-based volumetry differentiates progressive supranuclear palsy from corticobasal degeneration. Neuroimage 21:714–724 doi: 10.1016/j.neuroimage.2003.09.070 PubMedCrossRefGoogle Scholar
  2. 2.
    Boxer AL, Geschwind MD, Belfor N, Gorno-Tempini ML, Schauer GF, Miller BL et al (2006) Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol 63:81–86 doi: 10.1001/archneur.63.1.81 PubMedCrossRefGoogle Scholar
  3. 3.
    Brenneis C, Seppi K, Schocke M, Benke T, Wenning GK, Poewe W (2004) Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 75:246–249PubMedGoogle Scholar
  4. 4.
    Padovani A, Borroni B, Brambati SM, Agosti C, Broli M, Alonso R et al (2006) Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 77:457–463 doi: 10.1136/jnnp.2005.075713 PubMedCrossRefGoogle Scholar
  5. 5.
    Yamauchi H, Fukuyama H, Nagahama Y, Katsumi Y, Dong Y, Konishi J et al (1997) Atrophy of corpus callosum, cognitive impairment, and cortical hypometabolism in progressive supranuclear palsy. Ann Neurol 41:606–614 doi: 10.1002/ana.410410509 PubMedCrossRefGoogle Scholar
  6. 6.
    Yamauchi H, Fukuyama H, Nagahama Y, Katsumi Y, Hayashi T, Oyanagi C et al (2000) Comparison of the pattern of atrophy of the corpus callosum in frontotemporal dementia, progressive supranuclear palsy, and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 69:623–629 doi: 10.1136/jnnp.69.5.623 PubMedCrossRefGoogle Scholar
  7. 7.
    Arai K (2006) MRI of progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. J Neurol 253(Suppl 3):III25–III29 doi: 10.1007/s00415-006-3005-7 CrossRefGoogle Scholar
  8. 8.
    Paviour DC, Thornton JS, Lees AJ, Jäger HR (2007) Diffusion-weighted magnetic resonance imaging differentiates parkinsonian variant of multiple system atrophy from progressive supranuclear palsy. Mov Disord 22:68–74 doi: 10.1002/mds.21204 PubMedCrossRefGoogle Scholar
  9. 9.
    Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112:799–835 doi: 10.1093/brain/112.3.799 PubMedCrossRefGoogle Scholar
  10. 10.
    Hofer S, Frahma J (2006) Topography of the human corpus callosum revisited: comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994 doi: 10.1016/j.neuroimage.2006.05.044 PubMedCrossRefGoogle Scholar
  11. 11.
    Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1–9 doi: 10.1159/000113224 PubMedCrossRefGoogle Scholar
  12. 12.
    Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I et al (2003) SIC task force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 18:467–486 doi: 10.1002/mds.10459 PubMedCrossRefGoogle Scholar
  13. 13.
    Aoki S, Iwata NK, Masutani Y, Yoshida M, Abe O, Ugawa Y et al (2005) Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: feasibility study in patients with amyotrophic lateral sclerosis. Radiat Med 23:195–199PubMedGoogle Scholar
  14. 14.
    Ohshita T, Oka M, Imon Y, Yamaguchi S, Mimori Y, Nakamura S (2000) Apparent diffusion coefficient measurements in progressive supranuclear palsy. Neuroradiology 42:643–647 doi: 10.1007/s002340000372 PubMedCrossRefGoogle Scholar
  15. 15.
    Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a Frontal Assessment Battery at bedside. Neurology 55:1621–1626PubMedGoogle Scholar
  16. 16.
    Martinez-Martin P, Gil-Nagel A, Gracia LM, Gomez JB, Martinez-Sarries J, Bermejo F (1994) Unified Parkinson’s Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov Disord 9:76–83 doi: 10.1002/mds.870090112 PubMedCrossRefGoogle Scholar
  17. 17.
    Abe O, Aoki S, Hayashi N, Yamada H, Kunimatsu A, Mori H et al (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23:433–441 doi: 10.1016/S0197-4580(01)00318-9 PubMedCrossRefGoogle Scholar
  18. 18.
    Pfefferbaum A, Adalsteinsson E, Sullivan EV (2005) Frontal circuitry degradation marks healthy adult aging: evidence from diffusion tensor imaging. Neuroimage 26:891–899 doi: 10.1016/j.neuroimage.2005.02.034 PubMedCrossRefGoogle Scholar
  19. 19.
    Salat DH, Tuch DS, Greve DN, van der Kouwe AJW, Hevelone ND, Zaleta AK et al (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26:1215–1227 doi: 10.1016/j.neurobiolaging.2004.09.017 PubMedCrossRefGoogle Scholar
  20. 20.
    Sullivan EV, Adalsteinsson E, Pfefferbaum A (2006) Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex 16:1030–1039 doi: 10.1093/cercor/bhj045 PubMedCrossRefGoogle Scholar
  21. 21.
    Càmara E, Bodammer N, Rodríguez-Fornells A, Tempelmann C (2007) Age-related diffusion changes in human brain: a voxel-based approach. Neuroimage 34:1588–1599 doi: 10.1016/j.neuroimage.2006.09.045 PubMedCrossRefGoogle Scholar
  22. 22.
    Wiltshire K, Foster S, Kaye JA, Small BJ, Camicioli R (2005) Corpus callosum in neurodegenerative diseases: findings in Parkinson’s disease. Dement Geriatr Cogn Disord 20:345–351 doi: 10.1159/000088526 PubMedCrossRefGoogle Scholar
  23. 23.
    Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27:1776–1781PubMedGoogle Scholar
  24. 24.
    Oouchi H, Yamada K, Sakai K, Kizu O, Kubota T, Ito H et al (2007) Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas crossing fibers. AJNR Am J Neuroradiol 28:1102–1106 doi: 10.3174/ajnr.A0488 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Shoichi Ito
    • 1
  • Takahiro Makino
    • 1
  • Wakako Shirai
    • 1
  • Takamichi Hattori
    • 1
  1. 1.Department of Neurology, Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations