, Volume 49, Issue 4, pp 289–298 | Cite as

Statistical parametric mapping and statistical probabilistic anatomical mapping analyses of basal/acetazolamide Tc-99m ECD brain SPECT for efficacy assessment of endovascular stent placement for middle cerebral artery stenosis

  • Tae-Hong Lee
  • Seong-Jang KimEmail author
  • In-Ju Kim
  • Yong-Ki Kim
  • Dong-Soo Kim
  • Kyung-Pil Park
Diagnostic Neuroradiology



Statistical parametric mapping (SPM) and statistical probabilistic anatomical mapping (SPAM) were applied to basal/acetazolamide Tc-99m ECD brain perfusion SPECT images in patients with middle cerebral artery (MCA) stenosis to assess the efficacy of endovascular stenting of the MCA.


Enrolled in the study were 11 patients (8 men and 3 women, mean age 54.2 ± 6.2 years) who had undergone endovascular stent placement for MCA stenosis. Using SPM and SPAM analyses, we compared the number of significant voxels and cerebral counts in basal and acetazolamide SPECT images before and after stenting, and assessed the perfusion changes and cerebral vascular reserve index (CVRI).


The numbers of hypoperfusion voxels in SPECT images were decreased from 10,083 ± 8,326 to 4,531 ± 5,091 in basal images (P = 0.0317) and from 13,398 ± 14,222 to 7,699 ± 10,199 in acetazolamide images (P = 0.0142) after MCA stenting. On SPAM analysis, the increases in cerebral counts were significant in acetazolamide images (90.9 ± 2.2 to 93.5 ± 2.3, P = 0.0098) but not in basal images (91 ± 2.7 to 92 ± 2.6, P = 0.1602). The CVRI also showed a statistically significant increase from before stenting (median 0.32; 95% CI −2.19–2.37) to after stenting (median 1.59; 95% CI −0.85–4.16; P = 0.0068).


This study revealed the usefulness of voxel-based analysis of basal/acetazolamide brain perfusion SPECT after MCA stent placement. This study showed that SPM and SPAM analyses of basal/acetazolamide Tc-99m brain SPECT could be used to evaluate the short-term hemodynamic efficacy of successful MCA stent placement.


SPM SPAM Middle cerebral artery Stenosis Stent 



This study was supported by a grant from the Korea Ministry of Science and Technology Radiation Applied Neuroscience (M2 050407000405A070700410).

Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Wityk R, Lehman D, Klag M, et al (1996) Race and sex-differences in the distribution of cerebral atherosclerosis. Stroke 27:1974–1980PubMedGoogle Scholar
  2. 2.
    Wong K, Huang Y, Gao S, et al (1998) Intracranial stenosis in Chinese patients with acute stroke. Neurology 50:812–813PubMedGoogle Scholar
  3. 3.
    Marzewski DJ, Furlan AJ, St Louis P, et al (1982) Intracranial internal carotid artery stenosis: long-term prognosis. Stroke 13:821–824PubMedGoogle Scholar
  4. 4.
    Caplan LR, Babikian V, Helgason C, et al (1985) Occlusive disease of the middle cerebral artery. Neurology 35:975–982PubMedGoogle Scholar
  5. 5.
    Li H, Wong KS (2003) Racial distribution of intracranial and extracranial atherosclerosis. J Clin Neurosci 10:30–34PubMedCrossRefGoogle Scholar
  6. 6.
    Arenillas JF, Molina CA, Montaner J, et al (2001) Progression and clinical recurrence of symptomatic middle cerebral artery stenosis: a long-term follow-up transcranial doppler ultrasound study. Stroke 32:2898–2904PubMedGoogle Scholar
  7. 7.
    Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) Study Group (1998) Prognosis of patients with symptomatic vertebral or basilar artery stenosis. Stroke 29:1389–1392Google Scholar
  8. 8.
    Powers WJ, Grubb RL, Raichle ME (1989) Clinical results of extracranial-intracranial bypass surgery in patients with hemodynamic cerebrovascular disease. J Neurosurg 70:61–67PubMedCrossRefGoogle Scholar
  9. 9.
    Klijn CJ, Kappelle LJ, van der Zwan A, et al (2002) Excimer laser assisted high flow extracranial/intracranial bypass in patients with symptomatic carotid artery occlusion at high risk of recurrent cerebral ischemia: safety and long-term outcome. Stroke 33:2451–2458PubMedCrossRefGoogle Scholar
  10. 10.
    The EC/IC Bypass Study Group (1985) Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med 313:1191–1200CrossRefGoogle Scholar
  11. 11.
    Nahser HC, Henkes H, Weber W, et al (2000) Intracranial vertebrobasilar stenosis: angioplasty and follow-up. AJNR Am J Neuroradiol 21:1293–1301PubMedGoogle Scholar
  12. 12.
    Lee TH, Kim DH, Lee BH, et al (2005) Preliminary results of endovascular stent-assisted angioplasty for symptomatic middle cerebral artery stenosis. AJNR Am J Neuroradiol 26:166–174PubMedGoogle Scholar
  13. 13.
    Jiang WJ, Wang YJ, Du B, et al (2004) Stenting of symptomatic M1 stenosis of middle cerebral artery: an initial experience of 40 patients. Stroke 35:1375–1380PubMedCrossRefGoogle Scholar
  14. 14.
    Barber PA, Consolo HK, Yang Q, et al (2001) Comparison of MRI perfusion imaging and single photon emission computed tomography in chronic stroke. Cerebrovasc Dis 11:128–136PubMedCrossRefGoogle Scholar
  15. 15.
    Lee HY, Paeng JC, Lee DS, et al (2004) Efficacy assessment of cerebral arterial bypass surgery using statistical parametric mapping and probabilistic brain atlas on basal/acetazolamide brain perfusion SPECT. J Nucl Med 45:202–206PubMedGoogle Scholar
  16. 16.
    Penhune VB, Zatorre RJ, MacDonald JD, et al (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672PubMedCrossRefGoogle Scholar
  17. 17.
    North American Symptomatic Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade stenosis. N Engl J Med 325:445–453CrossRefGoogle Scholar
  18. 18.
    Chang L (1987) A method for attenuation correction in computed tomography. IEEEE Trans Nucl Sci 25:638–643CrossRefGoogle Scholar
  19. 19.
    Soonawala D, Amin T, Ebmeier KP, Steele JD, Dougall NJ, Best J, Migneco O, Nobili F, Scheidhauer K (2002) Statistical parametric mapping of 99mTc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage 17:1193–1202PubMedCrossRefGoogle Scholar
  20. 20.
    Talairach J, Tournoux P (1998) Coplanar stereotaxic atlas of the human brain. Thieme Medical, New YorkGoogle Scholar
  21. 21.
    Lee JS, Lee DS (2005) Analysis of functional brain images using population-based probabilistic atlas. Curr Med Imaging Rev 1:81–87CrossRefGoogle Scholar
  22. 22.
    Piotin M, Spelle L, Martin JB, et al (2000) Percutaneous transluminal angioplasty and stenting of the proximal vertebral artery for symptomatic stenosis. AJNR Am J Neuroradiol 21:727–731PubMedGoogle Scholar
  23. 23.
    Nabavi DG, LeBlanc LM, Baxter B (2001) Monitoring cerebral perfusion after subarachnoid hemorrhage using CT. Neuroradiology 43:7–16PubMedCrossRefGoogle Scholar
  24. 24.
    Eastwood JD, Alexander MJ, Petrella JR, Provenzale JM (2002) Dynamic CT perfusion imaging with acetazolamide challenge for the preprocedural evaluation of a patient with symptomatic middle cerebral artery occlusive disease. AJNR Am J Neuroradiol 23:285–287PubMedGoogle Scholar
  25. 25.
    Stamatakis EA, Glabus MF, Wyper DJ, Barnes A, Wilson JTL (1999) Validation of statistical parametric mapping (SPM) in assessing cerebral lesions: a simulation study. Neuroimage 10:397–407PubMedCrossRefGoogle Scholar
  26. 26.
    Chang DJ, Zubal G, Gottschalk C, Necochea A, Stokking R, Studholme C, Corsi M, Slawski J, Spencer SS, Blumenfeld H (2002) Comparison of statistical parametric mapping and SPECT imaging in patients with temporal lobe epilepsy. Epilepsia 43:68–74PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenfeld A, Kak AC (1982) Digital picture processing. Academic Press, New YorkGoogle Scholar
  28. 28.
    Hopfinger JB, Buchel C, Holmes AP, Friston KJ (2000) A study of analysis parameters that influence the sensitivity of event-related fMRI analyses. Neuroimage 11:326–333PubMedCrossRefGoogle Scholar
  29. 29.
    Worsley KJ, Marrett S, Neelin P, Evans AC (1996) Searching scale space for activation in PET images. Hum Brain Mapping 4:74–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tae-Hong Lee
    • 1
    • 2
  • Seong-Jang Kim
    • 2
    • 3
    Email author
  • In-Ju Kim
    • 2
    • 3
  • Yong-Ki Kim
    • 2
    • 3
  • Dong-Soo Kim
    • 2
  • Kyung-Pil Park
    • 2
    • 4
  1. 1.Department of Diagnostic Radiology, College of MedicinePusan National University HospitalBusanRepublic of Korea
  2. 2.Medical Research InstitutePusan National University HospitalBusanRepublic of Korea
  3. 3.Department of Nuclear Medicine and Medical Research InstitutePusan National University HospitalBusanRepublic of Korea
  4. 4.Department of Neurology, College of MedicinePusan National University HospitalBusanRepublic of Korea

Personalised recommendations