, Volume 48, Issue 10, pp 773–781 | Cite as

Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging

  • Bei Ding
  • Hua Wei Ling
  • Ke Min Chen
  • Hong Jiang
  • Yan Bo Zhu
Functional Neuroradiology



Regional cerebral blood volume (rCBV) and permeability surfaces (rPS) permit in vivo assessment of glioma microvasculature, which provides quite important pathophysiological information in grading gliomas. The aim of our study was to simultaneously examine rCBV and rPS in glioma patients to determine their correlation with histological grade using CT perfusion imaging.


A total of 22 patients with gliomas underwent multislice CT perfusion imaging preoperatively. Low-grade and high-grade groups were categorized corresponding to WHO grade II gliomas and WHO grade III or IV gliomas, respectively, as determined by histopathological examination. rCBVs and rPSs were obtained from regions of maximal abnormality in tumor parenchyma on CBV and PS color perfusion maps. Perfusion parameters were compared using the Kruskal-Wallis test in order to evaluate the differences in relation to tumor grade. The Pearson coefficients of rCBV and rPS for each tumor grade were assessed using SPSS 13.0 software.


rCBV and rPS provided significant P-value in differentiating glioma grade (low-grade gliomas 3.28±2.01 vs 2.12±3.19 ml/100 g/min, high-grade gliomas 8.87±4.63 vs 12.11±3.18 ml/100 g/min, P<0.05). Receiver operating characteristic (ROC) curves revealed better specificity and sensitivity in PS than in CBV for glioma grade. A significant correlation between rCBV and rPS was observed in high-grade gliomas (r=0.684). rCBVs in oligodendrogliomas were higher than in other low-grade gliomas, whereas their rPS values did not show a parallel difference.


Perfusion CT provides useful information for glioma grading and might have the potential to significantly impact clinical management and follow-up of cerebral gliomas.


Glioma Perfusion Computed tomography Diagnostic techniques 


  1. 1.
    Miles KA (2002) Functional computed tomography in oncology. Eur J Cancer 38:2079–2084PubMedCrossRefGoogle Scholar
  2. 2.
    Miles KA, Charnsangavej C, Lee FT et al (2000) Application of CT in the investigation of angiogenesis in oncology. Acad Radiol 7:840–850PubMedCrossRefGoogle Scholar
  3. 3.
    Gillard JH, Antoun NM, Burnet NG et al (2001) Reproducibility of quantitative CT perfusion imaging. Br J Radiol 74:552–555PubMedGoogle Scholar
  4. 4.
    Gillard JH, Minhas P, Hayball MP et al (2000) Assessment of quantitative computed tomographic cerebral perfusion imaging with H2 15O positron emission tomography. Neurol Res 22:457–464PubMedGoogle Scholar
  5. 5.
    Figarella-Branger D, Bouvier C (2005) Histological classification of human gliomas: state of art and controversies. Bull Cancer 92:301–309PubMedGoogle Scholar
  6. 6.
    Smith JS, Perry A, Borell TJ et al (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645PubMedGoogle Scholar
  7. 7.
    Thiessen B, Maguire JA, McNeil K (2003) Loss of heterozygosity for loci on chromosome arms 1p and 10q in oligodendroglial tumors: relationship to outcome and chemosensitivity. J Neurooncol 64:271–278PubMedCrossRefGoogle Scholar
  8. 8.
    Thorpe PE, Chaplin DJ, Blakey DC (2003) The first international conference on vascular targeting: meeting overview. Cancer Res 63:1144–1147PubMedGoogle Scholar
  9. 9.
    Galbraith SM (2001) Combretastatin A4 phosphate (CA4P) reduces tumor blood flow in animals and man, demonstrated by MRI. Proc Am Soc Clin Oncol 20:278aGoogle Scholar
  10. 10.
    Shih SC, Mullen A, Abrams K et al (1999) Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem 274:15407–15414PubMedCrossRefGoogle Scholar
  11. 11.
    Barker FG II, Chang SM, Huhn SL et al (1997) Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer 80:936–941PubMedCrossRefGoogle Scholar
  12. 12.
    Scott JN, Brasher PM, Sevick RJ et al (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949PubMedGoogle Scholar
  13. 13.
    Chaudhry IH, O’Donovan DG, Brenchley PE et al (2001) Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 39:409–415PubMedCrossRefGoogle Scholar
  14. 14.
    Machein MR, Plate KH (2000) VEGF in brain tumors.J Neurooncol 50:109–120PubMedCrossRefGoogle Scholar
  15. 15.
    Toi M, Matsumoto T, Bando H (2001) Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2:667–673PubMedCrossRefGoogle Scholar
  16. 16.
    Daumas-Duport C, Varlet P, Tucker ML (1997) Oligodendrogliomas. Part I: Patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neurooncol 34:37–59PubMedCrossRefGoogle Scholar
  17. 17.
    Guha A, Mukherjee J (2004) Advances in the biology of astrocytomas. Curr Opin Neurol 17:655–662PubMedCrossRefGoogle Scholar
  18. 18.
    Amoroso A (1997) Vascular endothelial growth factor: a key mediator of neoangiogenesis. A review. Eur Rev Med Pharmacol Sci 1:17–25PubMedGoogle Scholar
  19. 19.
    Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMedGoogle Scholar
  20. 20.
    Weidner N, Folkman J (1996) Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol 167–190Google Scholar
  21. 21.
    Dvorak HF, Nagy JA, Feng D et al (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132PubMedGoogle Scholar
  22. 22.
    Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907PubMedCrossRefGoogle Scholar
  23. 23.
    Roberts HC, Roberts TP, Brasch RC et al (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899PubMedGoogle Scholar
  24. 24.
    Provenzale JM, Wang GR, Brenner T et al (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716PubMedGoogle Scholar
  25. 25.
    Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755PubMedGoogle Scholar
  26. 26.
    Griebel J, Mayr NA, de Vries A et al (1997) Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging.J Magn Reson Imaging 7:111–119PubMedGoogle Scholar
  27. 27.
    Maia, AC Jr, Malheiros SM, da Rocha AJ et al (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 26:777–783PubMedGoogle Scholar
  28. 28.
    Jackson A, Kassner A, Annesley-Williams D et al (2002) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14PubMedGoogle Scholar
  29. 29.
    Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathological grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 179:783–789PubMedGoogle Scholar
  30. 30.
    Aronen HJ, Perkio J (2002) Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 12:501–523PubMedCrossRefGoogle Scholar
  31. 31.
    Lev MH, Ozsunar Y, Henson JW et al (2004) Elevated relative cerebral blood volume of oligodendrogliomas: a confounder of glial tumor grading specificity using dynamic spin-echo MR susceptibility mapping. AJNR Am J Neuroradiol 25:214–221PubMedGoogle Scholar
  32. 32.
    Diego JC, Bruce RR, Michael HL (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9:528–537CrossRefGoogle Scholar
  33. 33.
    Lupo JM, Cha S, Chang SM et al (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 26:1446–1454PubMedGoogle Scholar
  34. 34.
    Mukonoweshuro W, Herwardkar A, Jackson A (2002) Imaging of intracranial tumours. Imaging 14:380–395Google Scholar
  35. 35.
    Provenzale JM, Mukundan S, Dewhirst M (2005) The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol 185:763–767PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bei Ding
    • 1
  • Hua Wei Ling
    • 1
  • Ke Min Chen
    • 1
  • Hong Jiang
    • 2
  • Yan Bo Zhu
    • 3
  1. 1.Department of Radiology, Ruijin Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Pathology, Ruijin Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Neurosurgery, Ruijin Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPeople’s Republic of China

Personalised recommendations