Advertisement

Neuroradiology

, Volume 47, Issue 6, pp 417–424 | Cite as

Three-dimensional reconstruction and volumetry of intracranial haemorrhage and its mass effect

  • H.M. Strik
  • H. Borchert
  • C. Fels
  • M. Knauth
  • O. Rienhoff
  • M. Bähr
  • J.F. Verhey
Diagnostic Neuroradiology

Abstract

Intracerebral haemorrhage still causes considerable disability and mortality. The studies on conservative and operative management are inconclusive, probably due to inexact volumetry of the haemorrhage. We investigated whether three-dimensional (3-D), voxel-based volumetry of the haemorrhage and its mass effect is feasible with routine computed tomography (CT) scans. The volumes of the haemorrhage, ventricles, midline shift, the intracranial volume and ventricular compression in CT scans of 12 patients with basal ganglia haemorrhage were determined with the 3-D slicer software. Indices of haemorrhage and intracranial or ventricular volume were calculated and correlated with the clinical data. The intended measures could be determined with an acceptable intra-individual variability. The 3-D volumetric data tended to correlate better with the clinical course than the conventionally assessed distance of midline shift and volume of haemorrhage. 3-D volumetry of intracranial haemorrhage and its mass effect is feasible with routine CT examination. Prospective studies should assess its value for clinical studies on intracranial space-occupying diseases.

Keywords

Intracranial haemorrhage Volumetry Three-dimensional reconstruction Prognosis 

References

  1. 1.
    Broderick JP, Brott T, Tomsick T, Miller R, Huster G (1993) Intracerebral hemorrhage more than twice as common as subarachnoid hemorrhage. J Neurosurg 78:188–191Google Scholar
  2. 2.
    Hemphill JC, III, Bonovich DC, Besmertis L, Manley GT, Johnston SC (2001) The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 32:891–897Google Scholar
  3. 3.
    Morgenstern LB, Demchuk AM, Kim DH, Frankowski RF, Grotta JC (2001) Rebleeding leads to poor outcome in ultra-early craniotomy for intracerebral hemorrhage. Neurology 56:1294–1299Google Scholar
  4. 4.
    Rabinstein AA, Atkinson JL, Wijdicks EF (2002) Emergency craniotomy in patients worsening due to expanded cerebral hematoma: to what purpose? Neurology 58:1367–1372Google Scholar
  5. 5.
    Fernandes HM, Gregson B, Siddique S, Mendelow AD (2000) Surgery in intracerebral hemorrhage. The uncertainty continues. Stroke 31:2511–2516Google Scholar
  6. 6.
    Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G (1993) Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 24:987–993Google Scholar
  7. 7.
    Radberg JA, Olsson JE, Radberg CT (1991) Prognostic parameters in spontaneous intracerebral hematomas with special reference to anticoagulant treatment. Stroke 22:571–576Google Scholar
  8. 8.
    Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, Khoury J (1996) The ABCs of measuring intracerebral hemorrhage volumes. Stroke 27:1304–1305Google Scholar
  9. 9.
    Hallevy C, Ifergane G, Kordysh E, Herishanu Y (2002) Spontaneous supratentorial intracerebral hemorrhage. Criteria for short-term functional outcome prediction. J Neurol 249:1704–1709Google Scholar
  10. 10.
    Nagaratnam N, Saravanja D, Chiu K, Jamieson G (2001) Putaminal hemorrhage and outcome. Neurorehabil Neural Repair 15:51–56Google Scholar
  11. 11.
    Fogelholm R, Avikainen S, Murros K (1997) Prognostic value and determinants of first-day mean arterial pressure in spontaneous supratentorial intracerebral hemorrhage. Stroke 28:1396–1400Google Scholar
  12. 12.
    Loncaric S, Dhawan AP, Broderick J, Brott T (1995) 3-D image analysis of intra-cerebral brain hemorrhage from digitized CT films. Comput Methods Programs Biomed 46:207–216Google Scholar
  13. 13.
    Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM, III (2001) An integrated visualization system for surgical planning and guidance using image fusion and open MR. J Magn Reson Imaging 13:967–975Google Scholar
  14. 14.
    Steinhart Medizinsysteme GmbH, Vörstetten Germany (2004) HipaxTM medizinische Bildbearbeitung, Archivierung und Kommunikation. http://www.hipax.de/
  15. 15.
    Kitware, Inc. New York, NY, USA (2004) The visualization toolkit (VTK). http://www.vtk.org/
  16. 16.
    Surgical Planning Lab., Brigham and Woman’s Hospital, Harvard Medical School, Boston, Mass., USA (2004) 3D Slicer software tutorial. http://slicer.ai.mit.edu/tutorial/index.html
  17. 17.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3-D surface construction algorithm. Comput Graph 21:163–169Google Scholar
  18. 18.
    Blatter DD, Bigler ED, Gale SD, Johnson SC, Anderson CV, Burnett BM, Parker N, Kurth S, Horn SD (1995) Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. Am J Neuroradiol 16:241–251Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • H.M. Strik
    • 1
  • H. Borchert
    • 1
    • 3
  • C. Fels
    • 2
  • M. Knauth
    • 2
  • O. Rienhoff
    • 3
  • M. Bähr
    • 1
  • J.F. Verhey
    • 3
  1. 1.Department of Neurology, Medical SchoolUniversity of GöttingenGöttingenGermany
  2. 2.Department of Neuroradiology, Medical SchoolUniversity of GöttingenGöttingenGermany
  3. 3.Department of Medical Informatics, Medical SchoolUniversity of GöttingenGöttingenGermany

Personalised recommendations