, Volume 48, Issue 5, pp 338–345 | Cite as

In vivo basal ganglia volumetry through application of NURBS models to MR images

  • Giuseppe Anastasi
  • Giuseppina Cutroneo
  • Francesco Tomasello
  • Sebastiano Lucerna
  • AntonGiulio Vitetta
  • Placido Bramanti
  • Paolo Di Bella
  • Anna Parenti
  • Andrea Porzionato
  • Veronica Macchi
  • Raffaele De CaroEmail author
Head and Neck Radiology


Volumetry of basal ganglia (BG) based on magnetic resonance imaging (MRI) provides a sensitive marker in differential diagnosis of BG disorders. The non-uniform rational B-spline (NURBS) surfaces are mathematical representations of three-dimensional structures which have recently been applied in volumetric studies. In this study, a volumetric evaluation of BG based on NURBS was performed in 35 right-handed volunteers. We aimed to compare and validate this technique with respect to manual MRI volumetry and evaluate possible side differences between these structures. Intra- and interobserver biases less than 1.5% demonstrated the method’s stability. The mean percentage differences between NURBS and manual methods were less than 1% for all the structures considered; however, the internal segments of the globus pallidus showed a mean percentage difference of about 1.7%. Rightward asymmetry was found for the caudate nucleus (mean±SD 3.20±0.20 cm3 vs. 3.10±0.19 cm3, P<0.001) for both its head (1.44±0.10 cm3 vs. 1.41±0.09 cm3, P<0.01) and its body/tail (1.73±0.11 cm3 and 1.68±0.12 cm3, P<0.01), and for the globus pallidus (1.23±0.08 cm3 and 1.18±0.09 cm3, P<0.001) for both the internal (0.33±0.05 cm3 vs. 0.31±0.05 cm3, P<0.01) and external (0.90±0.05 cm3 vs. 0.86±0.05 cm3, P<0.001) segments. No volumetric side differences were found for the putamen (3.43±0.14 cm3 vs. 3.39±0.17 cm3, P>0.05). The rightward asymmetry of the BG may be ascribed to the predominant use of the right hand. In conclusion, NURBS is an accurate and reliable method for quantitative volumetry of nervous structures. It offers the advantage of giving a three-dimensional representation of the structures examined.


Magnetic resonance imaging Caudate nucleus Putamen Globus pallidus 



The authors are grateful to Giuliano Carlesso for skillful technical assistance.


  1. 1.
    Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MWJ (1995) Gray’s anatomy, 38th edn. Churchill Livingstone, London, pp 1186–1202Google Scholar
  2. 2.
    Ring HA, Serra-Mestres J (2002) Neuropsychiatry of the basal ganglia. J Neurol Neurosurg Psychiatry 72:12–21PubMedCrossRefGoogle Scholar
  3. 3.
    Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Sanges G, Stenroos ES, Pho LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21–q23. Science 274:1197–1199PubMedCrossRefGoogle Scholar
  4. 4.
    Whalley HC, Wardlaw JM (2001) Accuracy and reproducibility of simple cross-sectional linear and area measurements of brain structures and their comparison with volume measurements. Neuroradiology 43:263–271PubMedCrossRefGoogle Scholar
  5. 5.
    Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD (2002) Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 73:517–523PubMedCrossRefGoogle Scholar
  6. 6.
    Schulz JB, Skalej M, Wedekind D, Luft AR, Abele M, Voigt K, Dichgans J, Klockgether T (1999) Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol 45:65–74PubMedCrossRefGoogle Scholar
  7. 7.
    Schrimsher GW, Billingsley RL, Jackson EF, Moore BD (2002) Caudate nucleus volume asymmetry predicts attention-deficit hyperactivity disorder (ADHD) symptomatology in children. J Child Neurol 17:877–884PubMedCrossRefGoogle Scholar
  8. 8.
    Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J (1996) Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol 53:1293–1296PubMedGoogle Scholar
  9. 9.
    Raz N, Torres IJ, Acker JD (1995) Age, gender, and hemispheric differences in human striatum: a quantitative review and new data from in vivo MRI morphometry. Neurobiol Learn Mem 63:133–142PubMedCrossRefGoogle Scholar
  10. 10.
    Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560PubMedCrossRefGoogle Scholar
  11. 11.
    Gunning-Dixon FM, Head D, McQuain J, Acker JD, Raz N (1998) Differential aging of the human striatum: a prospective MR imaging study. AJNR Am J Neuroradiol 19:1501–1507PubMedGoogle Scholar
  12. 12.
    Peterson BS, Riddle MA, Cohen DJ, Katz LD, Smith JC, Leckman JF (1993) Human basal ganglia volume asymmetries on magnetic resonance images. Magn Reson Imaging 11:493–498PubMedCrossRefGoogle Scholar
  13. 13.
    Moore KL, Dalley AF (1999) Clinical oriented anatomy, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 981–983Google Scholar
  14. 14.
    Brooks DJ (2000) Imaging basal ganglia function. J Anat 196:543–554PubMedCrossRefGoogle Scholar
  15. 15.
    Krasnow B, Tamm L, Greicius MD, Yang TT, Glover GH, Reiss AL, Menon V (2003) Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 18:813–826PubMedCrossRefGoogle Scholar
  16. 16.
    Iwasaki N, Hamano K, Okada Y, Horigome Y, Nakayama J, Takeya T, Takita H, Nose T (1997) Volumetric quantification of brain development using MRI. Neuroradiology 39:841–846PubMedCrossRefGoogle Scholar
  17. 17.
    Brambilla P, Harenski K, Nicolettia MA, Mallinger AG, Franka E, Kupfera DJ, Keshavana MS, Soaresa JC (2001) Anatomical MRI study of basal ganglia in bipolar disorder patients. Psychiatry Res 106:65–80PubMedCrossRefGoogle Scholar
  18. 18.
    Keshavan MS, Rosenberg D, Sweeney JA, Pettegrew JW (1998) Decreased caudate volume in neuroleptic-naive psychotic patients. Am J Psychiatry 155:774–778PubMedGoogle Scholar
  19. 19.
    Gunduz H, Wu H, Ashtari M, Bogerts B, Crandall D, Robinson DG, Alvir J, Lieberman J, Kane J, Bilder R (2002) Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects. Biol Psychiatry 51:801–808PubMedCrossRefGoogle Scholar
  20. 20.
    Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS (2004) Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6:149–159PubMedCrossRefGoogle Scholar
  21. 21.
    Kerr JP, Knapp D, Frake B, Sellberg M (2000) “True” color surface anatomy: mapping the visible human to patient-specific CT data. Comput Med Imaging Graph 24:153–164PubMedCrossRefGoogle Scholar
  22. 22.
    Ward RC, Yambert MW, Toedte RJ, Munro NB, Easterly CE, Difilippo EP, Stallings DC (2000) Creating a human phantom for the virtual human program. Stud Health Technol Inform 70:368–374PubMedGoogle Scholar
  23. 23.
    Ji Y, Zhang F, Schwartz J, Stile F, Lineaweaver WC (2002) Assessment of facial tissue expansion with three-dimensional digitizer scanning. J Craniofac Surg 13:687–692PubMedCrossRefGoogle Scholar
  24. 24.
    Ellis H, Logan B, Dixon A (1999) Human sectional anatomy, 2nd edn, Butterworth-Heinemann, Oxford, pp 7–76Google Scholar
  25. 25.
    Gerhardt P, Frommhold W (1988) Atlas of anatomic correlations in CT and MRI. Thieme, StuttgartGoogle Scholar
  26. 26.
    Sears LL, Vest C, Mohamed S, Bailey J, Ranson BJ, Piven J (1999) An MRI study of the basal ganglia in autism. Prog Neuropsychopharmacol Biol Psychiatry 23:613–624PubMedCrossRefGoogle Scholar
  27. 27.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedGoogle Scholar
  28. 28.
    Lukas C, Hahn HK, Bellenberg B, Rexilius J, Schmid G, Schimrigk SK, Przuntek H, Koster O, Peitgen HO (2004) Sensitivity and reproducibility of a new fast 3-D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis. Neuroradiology 46:906–915PubMedCrossRefGoogle Scholar
  29. 29.
    Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682PubMedGoogle Scholar
  30. 30.
    Brunetti A, Postiglione A, Tedeschi E, Ciarmiello A, Quarantelli M, Covelli EM, Milan G, Larobina M, Soricelli A, Sodano A, Alfano B (2000) Measurement of global brain atrophy in Alzheimer’s disease with unsupervised segmentation of spin-echo MRI studies. J Magn Reson Imaging 11:260–266PubMedCrossRefGoogle Scholar
  31. 31.
    Ifthikharuddin SF, Shrier DA, Numaguchi Y, Tang X, Ning R, Shibata DK, Kurlan R (2000) MR volumetric analysis of the human basal ganglia: normative data. Acad Radiol 7:627–634PubMedCrossRefGoogle Scholar
  32. 32.
    Gurleyik K, Haacke EM (2002) Quantification of errors in volume measurements of the caudate nucleus using magnetic resonance imaging. J Magn Reson Imaging 15:353–363PubMedCrossRefGoogle Scholar
  33. 33.
    Bayramoglu A, Aydingoz U, Hayran M, Ozturk H, Cumhur M (2003) Comparison of qualitative and quantitative analyses of age-related changes in clivus bone marrow on MR imaging. Clin Anat 16:304–308PubMedCrossRefGoogle Scholar
  34. 34.
    Suganthy J, Raghuram L, Antonisamy B, Vettivel S, Madhavi C, Koshi R (2003) Gender- and age-related differences in the morphology of the corpus callosum. Clin Anat 16:396–403PubMedCrossRefGoogle Scholar
  35. 35.
    McDonald WM, Husain M, Doraiswamy PM, Figiel G, Boyko O, Krishnan KR (1991) A magnetic resonance image study of age-related changes in human putamen nuclei. Neuroreport 2:57–60PubMedCrossRefGoogle Scholar
  36. 36.
    Alheid GE, Switzer RC III, Heimer L (1990) Basal ganglia. In: Paxinos GT (ed) The human nervous system. Academic Press, San Diego, pp 438–532Google Scholar
  37. 37.
    Corson PW, Nopoulos P, Miller DD, Arndt S, Andreasen NC (1999) Change in basal ganglia volume over 2 years in patients with schizophrenia: typical versus atypical neuroleptics. Am J Psychiatry 156:1200–1204PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Giuseppe Anastasi
    • 1
  • Giuseppina Cutroneo
    • 1
  • Francesco Tomasello
    • 2
  • Sebastiano Lucerna
    • 2
  • AntonGiulio Vitetta
    • 1
  • Placido Bramanti
    • 3
  • Paolo Di Bella
    • 3
  • Anna Parenti
    • 5
  • Andrea Porzionato
    • 4
  • Veronica Macchi
    • 4
    • 5
  • Raffaele De Caro
    • 4
    Email author
  1. 1.Department of Biomorphology and BiotechnologiesUniversity of MessinaMessinaItaly
  2. 2.Department of NeurosurgeryUniversity of MessinaMessinaItaly
  3. 3.Study and Treatment Centre for Long-Stay Neurological Patients, Section of NeuroradiologyUniversity of MessinaMessinaItaly
  4. 4.Department of Human Anatomy and Physiology, Section of AnatomyUniversity of PaduaPaduaItaly
  5. 5.Department of Diagnostic Sciences and Special Therapy, Section of NeuroradiologyUniversity of PaduaPaduaItaly

Personalised recommendations