Advertisement

Neuroradiology

, Volume 46, Issue 6, pp 413–420 | Cite as

MRI language dominance assessment in epilepsy patients at 1.0 T: region of interest analysis and comparison with intracarotid amytal testing

  • K. DeblaereEmail author
  • P. A. Boon
  • P. Vandemaele
  • A. Tieleman
  • K. Vonck
  • G. Vingerhoets
  • W. Backes
  • L. Defreyne
  • E. Achten
Diagnostic Neuroradiology

Abstract

The primary goal of this study was to test the reliability of presurgical language lateralization in epilepsy patients with functional magnetic resonance imaging (fMRI) with a 1.0-T MR scanner using a simple word generation paradigm and conventional equipment. In addition, hemispherical fMRI language lateralization analysis and region of interest (ROI) analysis in the frontal and temporo-parietal regions were compared with the intracarotid amytal test (IAT). Twenty epilepsy patients under presurgical evaluation were prospectively examined by both fMRI and IAT. The fMRI experiment consisted of a word chain task (WCT) using the conventional headphone set and a sparse sequence. In 17 of the 20 patients, data were available for comparison between the two procedures. Fifteen of these 17 patients were categorized as left hemispheric dominant, and 2 patients demonstrated bilateral language representation by both fMRI and IAT. The highest reliability for lateralization was obtained using frontal ROI analysis. Hemispherical analysis was less powerful and reliable in all cases but one, while temporo-parietal ROI analysis was unreliable as a stand-alone analysis when compared with IAT. The effect of statistical threshold on language lateralization prompted for the use of t-value-dependent lateralization index plots. This study illustrates that fMRI-determined language lateralization can be performed reliably in a clinical MR setting operating at a low field strength of 1 T without expensive stimulus presentation systems.

Keywords

Functional magnetic resonance imaging Epilepsy surgery Language Intracarotid amytal test 

References

  1. 1.
    Boon P, Vandekerckhove T, Achten E, Thierry E, Goossens L, Vonck K, D’Have M, Van Hoey G, Vanrumste B, Legros B, Defreyne L, De Reuck J (1999) Epilepsy surgery in Belgium, the experience in Ghent. Acta Neurol Belg 99:256–265PubMedGoogle Scholar
  2. 2.
    Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg 17:266–282Google Scholar
  3. 3.
    Dion JE, Gates PC, Fox AJ, Barnett HJ, Blom RJ (1987) Clinical events following neuroangiography: a prospective study. Stroke 18:997–1004PubMedGoogle Scholar
  4. 4.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955PubMedGoogle Scholar
  5. 5.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedGoogle Scholar
  6. 6.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397PubMedGoogle Scholar
  7. 7.
    Desmond JE, Sum JM, Wagner AD, Demb JB, Shear PK, Glover GH, Gabrieli JDE, Morrell MJ (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118:1411–1419PubMedGoogle Scholar
  8. 8.
    Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, Benbadis S, Frost JA, Rao SM, Haughton VM (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984PubMedGoogle Scholar
  9. 9.
    Cuenod CA, Bookheimer SY, Hertz-Pannier L, Zeffiro TA, Theodore WH, Le Bihan D (1995) Functional MRI during word generation, using conventional equipment: a potential tool for language localization in the clinical environment. Neurology 45:1821–1827PubMedGoogle Scholar
  10. 10.
    Hertz-Pannier L, Gaillard WD, Mott SH, Cuenod CA, Bookheimer SY, Weinstein S, Conry J, Papero PH, Schiff SJ, Le Bihan D, Theodore WH (1997) Noninvasive assesment of language dominance in children and adolescents with functional MRI:a preliminary study. Neurology 48:1003–1012PubMedGoogle Scholar
  11. 11.
    Worthington C, Vincent DJ, Bryant AJ, Roberts DR, Vera CL, Ross DA, George MS (1997) Comparison of functional magnetic resonance imaging for language localization and intracarotid speech amytal testing in presurgical evaluation for intractable TLE. Stereotact Funct Neurosurg 69:197–201PubMedGoogle Scholar
  12. 12.
    Benson RR, FitzGerald DB, LeSueur LL, Kennedy DN, Kwong KK, Buchbinder BR, Davis TL, Weisskoff RM, Talavage TM, Logan WJ, Cosgrove GR, Belliveau JW, Rosen BR (1999) Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52:798–809PubMedGoogle Scholar
  13. 13.
    Lehéricy S, Cohen L, Bazin B, Samson S, Giacomini E, Rougetet R, Hertz-Pannier L, Le Bihan D, Marsault C, Baulac M (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633PubMedGoogle Scholar
  14. 14.
    Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental detremination of bold field strength dependence in vessels and tissue. Magn Reson Med 38:296–302PubMedGoogle Scholar
  15. 15.
    Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 T using deoxygenation contrast epi. Magn Res Med 29:277–279Google Scholar
  16. 16.
    Yang Y, Wen H, Mattay VS, Balaban RS, Frank JA, Duyn JH (1999) Comparison of 3D bold functional MRI with spiral acquisition at 1.5 T an 4.0 T. Neuroimage 9:446–451CrossRefPubMedGoogle Scholar
  17. 17.
    Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:495–604CrossRefPubMedGoogle Scholar
  18. 18.
    Edelstein WA, Glover GH, Hardy CJ, Redington RW(1986) The intrinsic signal-to-noise ratio in nmr imaging. Magn Res Med 3:730–746Google Scholar
  19. 19.
    Achten E, Van Borsel J, Voet T, Lahorte Ph, Santens P, Wielopolski P (1999) Whole brain mapping of motor and language cortex a 1 T: parameter optimization (abstract). Neuroimage 9, 6:S1088Google Scholar
  20. 20.
    Lundervold A, Ersland L, Gjesdal KI, Smievoll AI, Tillung T, Sundberg H, Hugdahl K (1995) Functional magnetic resonance imaging of primary visual processing using a 1.0 tesla scanner. Int J Neurosci 81:151–168Google Scholar
  21. 21.
    Santosh CG, Rimmington JE, Best JJK (1995) Functional magnetic resonance imaging at 1T: motor cortex, suplementary motor area and visual cortex activation. Br J Radiol 68:369–374PubMedGoogle Scholar
  22. 22.
    Jones AP, Hughes DG, Brettle DS, Robinson L, Sykes JR, Aziz Q, Hamdy S, Thompson DG, Derbyshire SWG, Chen ACN, Jones AKP (1998) Experiences with functional magnetic resonance imaging at 1 T. Br J Radiol 71:160–166PubMedGoogle Scholar
  23. 23.
    Van der Kallen BFW, Van Erning LJTh, Van Zuijlen MWJ, Merx H, Thijssen HOM (1998) Activation of the sensorimotor cortex at 1.0 T: comparison of echo-planar and gradient-echo imaging. AJNR 19:1099–1104Google Scholar
  24. 24.
    Papke K, Hellmann T, Renger B, Morgenroth C, Knecht S, Schuierer G, Reimer P (1999) Clinical applications of functional MRI at 1.0 T: motor and language studies in healthy subjects and patients. Eur Radiol 9:211–220CrossRefPubMedGoogle Scholar
  25. 25.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113PubMedGoogle Scholar
  26. 26.
    Boon P, Thiery E, Lagae B, De Reuck J (1992) De studie van taaldominantie en geheugenfunctie door middel van de Wada-test. Tijdschr. voor Geneeskunde 48;8:593–600Google Scholar
  27. 27.
    Blume WT, Grabow JD, Darley FL, Aronson AE (1973) Intracarotid amytal test of language and memory before temporal lobectomy for seizure control. Neurology 23:812–819PubMedGoogle Scholar
  28. 28.
    Staudt M, Grodd W, Niemann G, Wildgruber D, Erb M, Krageloh-Mann I (2001) Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology 57:122–125PubMedGoogle Scholar
  29. 29.
    Spreer J, Arnold S, Quiske A, Wohlfarth R, Ziyeh S, Altenmüller D, Herpers M, Kassubek J, Klisch J, Steinhoff BJ, Honegger J, Schulze-Bonhage A, Schumacher M (2002) Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing. Neuroradiology 44:467–474CrossRefPubMedGoogle Scholar
  30. 30.
    Bahn MM, LinW, Silbergeld DL, Miller JW, Kuppusamy K, Cook RJ, Hammer G, Wetzel R, Cross D (1997) Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. Am J Roentgenol 19:575–579Google Scholar
  31. 31.
    Yetkin FZ, Swanson S, Fischer M, Akansel G, Morris G, Mueller W, Haughton V (1998) Functional MR of frontal lobe activation: comparison with Wada language results. AJNR 19:1095–1098Google Scholar
  32. 32.
    Gaillard WD, Balsamo L, Xu B, Grandin CB, Braniecki SH, Papero PH, Weinstein S, Conry J, Pearl PL, Sachs B, Sato S, Jabbari B, Vezina LG, Frattali C, Theodore WH (2002) Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 59:256–265PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • K. Deblaere
    • 1
    Email author
  • P. A. Boon
    • 2
  • P. Vandemaele
    • 1
  • A. Tieleman
    • 1
  • K. Vonck
    • 2
  • G. Vingerhoets
    • 3
  • W. Backes
    • 5
  • L. Defreyne
    • 4
  • E. Achten
    • 1
  1. 1.Department of NeuroradiologyGhent University HospitalGhentBelgium
  2. 2.Reference Center for Refractory Epilepsy of the Department of NeurologyGhent University HospitalGhentBelgium
  3. 3.Labaratory for Neuropsychology, Neurology Section of the Department of Internal MedicineGhent UniversityGhentBelgium
  4. 4.Department of Interventional RadiologyGhent University HospitalGhent Belgium
  5. 5.Department of NeuroradiologyUniversity Hospital MaastrichtMaastrichtThe Netherlands

Personalised recommendations