, Volume 46, Issue 7, pp 541–549 | Cite as

MR spectroscopy in the evaluation of recurrent contrast-enhancing lesions in the posterior fossa after tumor treatment

  • P. Weybright
  • P. Maly
  • D. Gomez-Hassan
  • C. Blaesing
  • P. C. Sundgren
Diagnostic Neuroradiology


Recurrent contrast-enhancing lesions arising within foci of prior brain neoplasms treated with chemotherapy and/or radiation therapy pose a significant diagnostic dilemma, as they may represent recurrent or residual tumor, treatment-related changes, or a combination of both. Those lesions specifically in the posterior fossa are even more difficult to assess, given the technical limitations of 2D CSI in the infratentorial compartment. We explored the feasibility of 2D-CSI MR spectroscopy in the evaluation of recurrent contrast-enhancing lesions in eight consecutive patients who had undergone treatment for posterior fossa or brainstem tumors. Mean Cho/Cr (choline/creatine) ratios obtained by 2D-CSI in recurrent tumor, treatment-related changes, and normal white matter were 2.93, 1.62, and 0.97, respectively, mean Cho/NAA (choline/N-Acetyl aspartate) ratios were 4.34, 1.74, and 0.93, and mean NAA/Cr (N-acetyl aspartate/creatine) ratios were 0.74, 0.92, and 1.26, respectively. In conclusion, also in the posterior fossa, MR spectroscopy is likely to be useful as an adjunct to conventional imaging characteristics in distinguishing recurrent tumor from treatment-related changes, irrespectively of the MRS technique used. In most cases spectra of diagnostic quality can be obtained using 2D-CSI to include coverage of both the lesion and its vicinity.


MRS 2D-CSI Brain Posterior fossa Tumor Radiation necrosis 


  1. 1.
    Bonavita S, Di Salle F, Tedeschi G (1999) Proton MRS in neurological disorders. Eur Radiol 30:125–131CrossRefGoogle Scholar
  2. 2.
    Fulham MJ, Bizzi A, Dieta MJ, Shih HH, Raman R, Sobering GS, Frank JA, Dwyer AJ, Alger JR, Di Chiro G (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185:675–686PubMedGoogle Scholar
  3. 3.
    Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, Rossenblum ML, Mikkelsen T (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51:912–919PubMedGoogle Scholar
  4. 4.
    Croteau D, Scarpace L, Hearschen D, Gutierrez J, Fischer J, Rock JP, Mikkelsen T (2001) Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 49:823–829PubMedGoogle Scholar
  5. 5.
    Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612PubMedGoogle Scholar
  6. 6.
    Schlemmer JP, Bachert P, Henze M, Buslei R. Herfarth KK, Debus J, van Kaick G (2002) Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 44:216–222CrossRefPubMedGoogle Scholar
  7. 7.
    Chong VF, Rumpel H, Fan YF, Mukherji SK (2001) Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 11:317–324CrossRefPubMedGoogle Scholar
  8. 8.
    Chong VF, Rumpel H, Aw YS, Ho GL, Fan YF, Chua EJ (1999) Temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma: 1H MR spectroscopic findings. Int J Radiat Oncol Biol Phys 45:699–705CrossRefPubMedGoogle Scholar
  9. 9.
    Hall WA, Martin A, Liu H, Truwit CL (2001) Improving diagnostic yield in brain biopsy: coupling spectroscopic targeting with real-time needle placement. J Magn Reson Imaging 13:12–15CrossRefPubMedGoogle Scholar
  10. 10.
    Nafe R, Herminghaus S, Raab P, Wagner S, Pilatus U, Schneider B, Schon W, Zanella F, Lanfermann H (2003) Preoperative proton-MR spectroscopy of gliomas—correlation with quantitative nuclear morphology in surgical specimen. J Neurooncol 63:233–245CrossRefPubMedGoogle Scholar
  11. 11.
    Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy to the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381CrossRefPubMedGoogle Scholar
  12. 12.
    Norfray JF, Tomita T, Byrd SE, Ross BD, Berger PA, Miller RS (1999) Clinical impact of MR spectroscopy when MR imaging is indeterminate in pediatric brain tumors. AJR Am J Roentgenology 173:119–125Google Scholar
  13. 13.
    Lin A, Bluml S, Mamelak AN (1999) Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspected malignant brain tumors. J Neurooncol 45:69–81CrossRefPubMedGoogle Scholar
  14. 14.
    Bendszus M, Warmuth-Metz M, Klein R, Burger R, Schichor J, Tonn JC, Solymosi L (2000) MR spectroscopy in gliomatosis cerebri. AJNR Am J Neuroradiol 21:375–380PubMedGoogle Scholar
  15. 15.
    Galanaud D, Le Fur Y, Nicoli F, Denis B, Confort-Gouny S, Ranjeva J-P, Viout P, Pelletier J, Cozzone P (2001) Regional metabolite levels of the normal posterior fossa studied by proton chemical shift imaging. MAGMA 13:127–133CrossRefPubMedGoogle Scholar
  16. 16.
    Tedeschi G, Litvan I, Bonavita S, Bertolino A, Lundbom N, Patronas NJ, Hallett M (1997) Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson’s disease, and corticobasal degeneration. Brain 120:1541–1552CrossRefPubMedGoogle Scholar
  17. 17.
    Mascalchi M, Tosetti M, Plasmati R, Bianchi MC, Tessa C, Salvi F (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type I. Ann Neurol 43:244–252PubMedGoogle Scholar
  18. 18.
    Martin PR, Gibbs SJ, Nimmerrichter AA, Riddle WR, Welch LW, Willcott MR (1995) Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcohol Clin Exp Res 19:1078–1082PubMedGoogle Scholar
  19. 19.
    Blaesing CM, Rohrer SE, Gomez-Hassan D, Maly Sundgren P (2003) Challenging voxel placement for brain MR spectroscopy. SMRT 12th Annual Meeting, Syllabus p 308Google Scholar
  20. 20.
    Mascalchi M, Brugnoli R, Guerrini L, Belli G, Nistri M, Politi LS, Gavazzi C, Lolli F Argenti G, Villari N (2002) Single-voxel long TE 1H-MR spectroscopy of the normal brainstem and cerebellum. J Magn Reson Imaging 16:532–537CrossRefPubMedGoogle Scholar
  21. 21.
    Rutkoski T, Tarnawski R, Sokol M, Maciejewski B (2003) Proton-MR spectroscopy of normal brain tissue before and after postoperative radiotherapy because of primary brain tumors. Int J Radiat Oncol Biol Phys 56:1381–1389CrossRefPubMedGoogle Scholar
  22. 22.
    Isobe T, Matsumara A, Anno I, Nagatomo Y, Yoshizawa T, Itai Y (2003) Changes in proton-MRS in glioma patients before and after irradiation and the significance of quantitative analysis of choline-containing compounds. No Shinkei Geka 31:167–172PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • P. Weybright
    • 1
  • P. Maly
    • 1
  • D. Gomez-Hassan
    • 1
  • C. Blaesing
    • 1
  • P. C. Sundgren
    • 1
  1. 1.Department of RadiologyNeuroradiology DivisionMI 48109-0030

Personalised recommendations