Advertisement

Semigroup Forum

, Volume 97, Issue 3, pp 562–570 | Cite as

Module operator virtual diagonals on the Fourier algebra of an inverse semigroup

  • Massoud Amini
  • Reza Rezavand
RESEARCH ARTICLE
  • 39 Downloads

Abstract

For an amenable inverse semigroup S with the set of idempotents E and a minimal idempotent, we explicitly construct a contractive and positive module operator virtual diagonal on the Fourier algebra A(S), as a completely contractive Banach algebra and operator module over \(\ell ^1(E)\). This generalizes a well known result of Zhong-Jin Ruan on operator amenability of the Fourier algebra of a (discrete) group Ruan (Am J Math 117:1449–1474, 1995).

Keywords

Completely contractive Banach algebras Module operator amenability Module operator virtual diagonal Inverse semigroup Fourier algebra 

References

  1. 1.
    Amini, M.: Module amenability for semigroup algebras. Semigr. Forum 69, 243–254 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amini, M.: Corrigendum, module amenability for semigroup algebras. Semigr. Forum 72, 493 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Amini, M., Rezavand, R.: Module operator amenability of the Fourier algebra of an inverse semigroup. Semigr. Forum 92, 45–70 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barnes, B.A.: Representations of the \(l^{1}\)-algebra of an inverse semigroup. Trans. Am. Math. Soc. 218, 361–396 (1976)zbMATHGoogle Scholar
  5. 5.
    Bohm, G., Szlachanyi, K.: Weak \(C^{*}\)-Hopf algebras and multiplicative isometries. J. Oper. Theory 45, 357–376 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Duncan, J., Namioka, I.: Amenability of inverse semigroups and their semigroup algebras. Proc. Royal Soc. Edinb. 80, 309–321 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Effros, E.G., Ruan, Z.-J.: Operator Spaces. Oxford University Press, New York (2000)zbMATHGoogle Scholar
  8. 8.
    Ruan, Z.-J.: The operator amenability of \(A(G)\). Am. J. Math. 117, 1449–1474 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wordingham, J.R.: The left regular \(*\)-representation of an inverse semigroup. Proc. Am. Math. Soc. 86, 55–58 (1982)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematical SciencesTarbiat Modares UniversityTehranIran
  2. 2.School of Mathematics, Statistics and Computer Science, College of ScienceUniversity of TehranTehranIran
  3. 3.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations