Advertisement

Constructing sequences with high nonlinear complexity using the Weierstrass semigroup of a pair of distinct points of a Hermitian curve

  • Olav Geil
  • Ferruh Özbudak
  • Diego Ruano
Research Article
  • 37 Downloads

Abstract

Using the Weierstrass semigroup of a pair of distinct points of a Hermitian curve over a finite field, we construct sequences with improved high nonlinear complexity. In particular we improve the bound obtained in Niederreiter and Xing (IEEE Trans Inf Theory 60(10):6696–6701, 2014, Theorem 3) considerably and the bound in Niederreiter and Xing (2014, Theorem 4) for some parameters.

Keywords

Weierstrass semigroup Weierstrass pair Hermitian function field Sequences Nonlinear complexity 

Notes

Acknowledgements

The authors are grateful to Department of Mathematical Sciences, Aalborg University for supporting a one month visiting professor position for the second listed author. This work was supported by The Danish Council for Independent Research (Grant No. DFF–4002-00367), by the Spanish MINECO/FEDER (Grant No. MTM2015-65764-C3-2-P, MTM2015-69138-REDT and RYC-2016-20208 (AEI/FSE/UE)) and by METU Coordinatorship of Scientific Research Projects via grant for projects BAP-01-01-2016-008 and BAP-07-05-2017-007.

References

  1. 1.
    Carvallo, C., Kato, T.: On Weierstrass semigroups and sets: review of new results. Geom. Dedic. 239, 195–210 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carvallo, C., Torres, F.: On Goppa codes and Weierstrass points at several points. Des. Codes. Cryptogr. 35, 211–225 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Castellanos, C., Tizziotti, G.: On Weierstrass semigroup at m points on curves of the form f(y) = g(x). J. Pure Appl. Algebra 222, 1803–1809 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers, Lecture Notes in Computer Science, 561. Springer, Berlin, x+187 pp. ISBN: 3-540-54973-0 (1991)Google Scholar
  5. 5.
    Garcia, A., Kim, S.J., Lax, R.F.: Consecutive Weierstrass gaps and minimum distance of Goppa codes. J. Pure Appl. Algebra 84(2), 199–207 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Garcia, A., Stichtenoth, H., Xing, C.-P.: On subfields of the Hermitian function field. Compos. Math. 120(2), 137–170 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goppa, V.D.: Codes associated with divisors. Prob. Pereda. Inf. 13, 33–39 (1977)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Goppa, V.D.: Codes on algebraic curves. Sov. Math. Dokl. 24, 75–91 (1981)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Matthews, G.L.: Weierstrass semigroups and codes from a quotient of the Hermitian curve. Des. Codes Cryptogr. 37(3), 473–492 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Meidl, W., Winterhof, A.: Linear complexity of sequences and multisequences. In: Handbook of Finite Fields, Chapman and Hall/CRC, 1068 pp. ISBN: 9781439873786 (2013)Google Scholar
  11. 11.
    Meidl, W., Niederreiter, H.: Multisequences with high joint nonlinear complexity. Des. Codes Cryptogr. 81(2), 337–346 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, vi+241 pp. ISBN: 0-89871-295-5 (1992)Google Scholar
  13. 13.
    Niederreiter, H., Xing, C.: Rational Points on Curves over Finite Fields. Cambridge University Press, Cambridge, x+245 pp. ISBN: 0-521-66543-4 (2001)Google Scholar
  14. 14.
    Niederreiter, H., Xing, C.: Algebraic geometry in coding theory and cryptography. Cambridge University Press, Princeton University Press, Princeton, NJ, xii+260 pp. ISBN: 978-0-691-10288-7 (2009)Google Scholar
  15. 15.
    Niederreiter, H., Xing, C.: Sequences with high nonlinear complexity. IEEE Trans. Inf. Theory 60(10), 6696–6701 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rueppel, R. A.: Stream Ciphers. Contemporary Cryptology. IEEE, New York, pp. 65–134 (1992)Google Scholar
  17. 17.
    Stichtenoth, H.: Algebraic function fields and codes, second edition. Graduate Texts in Mathematics, 254. Springer, Berlin, xiv+355 pp. ISBN: 978-3-540-76877-7 (2009)Google Scholar
  18. 18.
    Yang, S., Hu, C.: Pure Weierstrass gaps from a quotient of the Hermitian curve. Finite Fields Appl. 50, 251–271 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  2. 2.Department of Mathematics, Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.IMUVA (Mathematics Research Institute)University of ValladolidValladolidSpain

Personalised recommendations