Advertisement

Measure-preserving semiflows and one-parameter Koopman semigroups

  • Nikolai Edeko
  • Moritz Gerlach
  • Viktoria Kühner
Research Article
  • 36 Downloads

Abstract

For a finite measure space \(\mathrm {X}\), we characterize strongly continuous Markov lattice semigroups on \(\mathrm {L}^p(\mathrm {X})\) by showing that their generator A acts as a derivation on the dense subspace \(D(A)\cap \mathrm {L}^\infty (\mathrm {X})\). We then use this to characterize Koopman semigroups on \(\mathrm {L}^p(\mathrm {X})\) if \(\mathrm {X}\) is a standard probability space. In addition, we show that every measurable and measure-preserving flow on a standard probability space is isomorphic to a continuous flow on a compact Borel probability space.

Keywords

Measure-preserving semiflow Koopman semigroup Derivation Topological model 

Notes

Acknowledgements

We express our sincere gratitude towards the anonymous referee for their insightful observations and detailed comments.

References

  1. 1.
    Ambrose, W., Kakutani, S.: Structure and continuity of measurable flows. Duke Math. J. 9(1), 25–42 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    de Jeu, M., Rozendaal, J.: Disintegration of positive isometric group representations on $\text{ L }^{p}$-spaces. Positivity 21(2), 673–710 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Derndinger, R., Nagel, R.: Der generator stark stetiger Verband-shalbgruppen auf $C(X)$ und dessen Spektrum. Math. Ann. 245(2), 159–174 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics, vol. 272. Springer, Berlin (2015)zbMATHGoogle Scholar
  5. 5.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)zbMATHGoogle Scholar
  6. 6.
    Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups, vol. 31. Colloquium Publications. American Mathematical Society, Providence (1957)zbMATHGoogle Scholar
  7. 7.
    Nagel, R. (ed.): One-parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)zbMATHGoogle Scholar
  8. 8.
    Pugh, C., Shub, M.: Ergodic elements of ergodic actions. Compositio Math. 23(1), 115–122 (1971)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Tao, T.: An Introduction to Measure Theory. Graduate Studies in Mathematics, vol. 126. American Mathematical Society, Providence (2011)zbMATHGoogle Scholar
  10. 10.
    ter Elst, T., Lemańczyk, M.: On one-parameter Koopman groups. Ergodic Theory Dyn. Syst. 37(5), 1635–1656 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nikolai Edeko
    • 1
  • Moritz Gerlach
    • 2
  • Viktoria Kühner
    • 1
  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany
  2. 2.Institut für MathematikUniversität PotsdamPotsdamGermany

Personalised recommendations