Semigroup Forum

, Volume 95, Issue 3, pp 423–440 | Cite as

Semilattice transversals of regular bands II

  • Francis PastijnEmail author
  • Justin Albert
Research Article


A band is a regular band if and only if it can be embedded into a band in which every element belongs to a semilattice transversal.


Regular band Semilattice transversal Geometry with parallelism 


  1. 1.
    Albert, J.: Bands with high symmetry and uniform bands. Doctoral dissertation, Marquette University, Milwaukee (2012)Google Scholar
  2. 2.
    Buekenhout, F., Huybrechts, C., Pasini, A.: Parallelism in diagram geometry. Bull. Belg. Math. Soc. 3, 355–397 (1994)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Buekenhout, F., Cohen, A.M.: Diagram Geometry. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups I. American Mathematical Society, Providence (1961)zbMATHGoogle Scholar
  5. 5.
    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups II. American Mathematical Society, Providence (1967)zbMATHGoogle Scholar
  6. 6.
    Dembowski, P.: Finite Geometries. Springer, New York (1968)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Plenum Publishing Corporation, New York (1998)zbMATHGoogle Scholar
  8. 8.
    Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)zbMATHGoogle Scholar
  9. 9.
    Janowitz, M.F.: Baer semigroups. Duke Math. J. 32, 95–95 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Janowitz, M.F.: A semigroup approach to lattices. Can. J. Math. 18, 1212–1223 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kimura, N.: The structure of idempotent semigroups (I). Pac. J. Math. 8, 257–275 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties, vol. I. Wadsworth & Brooks/Cole, Monterey (1987)zbMATHGoogle Scholar
  13. 13.
    Nambooripad, K.S.S.: Structure of Regular Semigroups I. Memoirs of the American Mathematical Society, No. 224, Providence (1979)Google Scholar
  14. 14.
    Pastijn, F.: Biordered sets and complemented modular lattices. Semigroup Forum 21, 205–220 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pastijn, F., Albert, J.: Free split bands. Semigroup Forum 90, 753–762 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Pastijn, F., Albert, J.: Semilattice transversals of regular bands I. Commun. Algebra 45(11), 4979–4991 (2017)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Petrich, M.: Lectures in Semigroups. Akademie-Verlag, Berlin (1977)zbMATHGoogle Scholar
  18. 18.
    Shrikhande, S.S.: Affine resolvable balanced incomplete block designs. A survey. Aequ. Math. 14(3), 251–269 (1980)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics and Computer ScienceMarquette UniversityMilwaukeeUSA
  2. 2.Department of Mathematics and Applied MathematicsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations