Advertisement

Semigroup Forum

, Volume 92, Issue 1, pp 23–44 | Cite as

Growth degree classification for finitely generated semigroups of integer matrices

  • Jason P. Bell
  • Michael Coons
  • Kevin G. Hare
Research Article
  • 172 Downloads

Abstract

Let \({\mathcal {A}}\) be a finite set of \(d\times d\) matrices with integer entries and let \(m_n({\mathcal {A}})\) be the maximum norm of a product of \(n\) elements of \({\mathcal {A}}\). In this paper, we classify gaps in the growth of \(m_n({\mathcal {A}})\); specifically, we prove that \(\lim _{n\rightarrow \infty } \log m_n({\mathcal {A}})/\log n\in \mathbb {Z}_{\geqslant 0}\cup \{\infty \}.\) This has applications to the growth of regular sequences as defined by Allouche and Shallit.

Keywords

Finitely generated semigroups Matrix semigroups Automatic sequences Regular sequences 

Notes

Acknowledgments

We thank Vladimir Protasov for bringing our attention to his current result with Jungers [22] as well as providing us with a preprint of that work. Research of J. P. Bell was supported by NSERC Grant 326532-2011, the research of M. Coons was supported by ARC Grant DE140100223, and the research of K. G. Hare was supported by NSERC Grant RGPIN-2014-03154.

References

  1. 1.
    Allouche, J.-P., Shallit, J.: The ring of \(k\)-regular sequences. Theor. Comput. Sci. 98(2), 163–197 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bell, J.P.: A gap result for the norms of semigroups of matrices. Linear Algebra Appl. 402, 101–110 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bell, J.P., Coons, M., Hare, K.G.: The minimal growth of a \(k\)-regular sequence. Bull. Aust. Math. Soc. 90(2), 195–203 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and Its Applications, vol. 137. Cambridge University Press, Cambridge (2011)Google Scholar
  5. 5.
    Blondel, V.D., Nesterov, Y.: Computationally efficient approximations of the joint spectral radius. SIAM J. Matrix Anal. Appl. 27(1), 256–272 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Blondel, V.D., Theys, J., Vladimirov, A.A.: An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal. Appl. 24(4), 963–970 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bousch, T., Mairesse, J.: Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. Am. Math. Soc. 15(1), 77–111 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cicone, A., Guglielmi, N., Serra-Capizzano, S., Zennaro, M.: Finiteness property of pairs of \(2\times 2\) sign-matrices via real extremal polytope norms. Linear Algebra Appl. 432(2–3), 796–816 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. Wiley, Hoboken, NJ (2004)zbMATHGoogle Scholar
  10. 10.
    Hare, K.G., Morris, I.D., Sidorov, N., Theys, J.: An explicit counterexample to the Lagarias–Wang finiteness conjecture. Adv. Math. 226(6), 4667–4701 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hare, K.G., Morris, I.D., Sidorov, N.: Extremal sequences of polynomial complexity. Math. Proc. Camb. Philos. Soc. 155(2), 191–205 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Heil, C., Strang, G.: Continuity of the joint spectral radius: application to wavelets. In: Bojanczyk, A., Cybenko, G. (eds.) Linear Algebra for Signal Processing (Minneapolis, MN, 1992), IMA Volumes in Mathematics and Its Applications, vol. 69, pp. 51–61. Springer, New York (1995)Google Scholar
  13. 13.
    Jacobson, N.: Structure theory of simple rings without finiteness assumptions. Trans. Am. Math. Soc. 57, 228–245 (1945)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jungers, R.: The joint spectral radius. In: Lecture Notes in Control and Information Sciences, vol. 385. Springer, Berlin (2009)Google Scholar
  15. 15.
    Jungers, R.M., Blondel, V.D.: On the finiteness property for rational matrices. Linear Algebra Appl. 428(10), 2283–2295 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Jungers, R.M., Protasov, V., Blondel, V.D.: Efficient algorithms for deciding the type of growth of products of integer matrices. Linear Algebra Appl. 428(10), 2296–2311 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kozyakin, V.S.: A dynamical systems construction of a counterexample to the finiteness conjecture. In: Proceedings of the 44th IEEE Conference on Decision and Control, European Control Conference, pp. 2338–2343 (2005)Google Scholar
  18. 18.
    Kronecker, L.: Zwei Sätze über Gleichungen mit ganzzahligen coefficienten. J. Reine Angew. Math. 53, 173–175 (1857)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lagarias, J.C., Wang, Y.: The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 214, 17–42 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rota, G.-C., Strang, G.: A note on the joint spectral radius. Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math. 22, 379–381 (1960)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Theys, J.: Joint Spectral Radius: Theory and Approximations. PhD Thesis, Université Catholique de Louvin (2005)Google Scholar
  22. 22.
    Vladimir, Y.P., Raphaël, M.J.: Resonance and marginal instability of switching systems. Nonlinear Anal. Hybrid Syst. 17, 81–93 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.School of Mathematical and Physical SciencesUniversity of NewcastleCallaghanAustralia

Personalised recommendations