Semigroup Forum

, Volume 92, Issue 1, pp 142–157 | Cite as

On planar right groups

  • Kolja KnauerEmail author
  • Ulrich Knauer


In 1896 Heinrich Maschke characterized planar finite groups, that is groups which admit a generating system such that the resulting Cayley graph is planar. In our study we consider the question, which finite semigroups have a planar Cayley graph. Right groups are a class of semigroups relatively close to groups. We present a complete characterization of planar right groups.


Semigroup Right group Cayley graph Planar  



The exposition of the paper greatly benefited from the valuable comments of an anonymous referee.


  1. 1.
    Babai, L.: Groups of graphs on given surfaces. Acta Math. Acad. Sci. Hungar. 24, 215–221 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babai, L.: Some applications of graph contractions. J. Graph Theory 1(2), 125–130 (1977). Special issue dedicated to Paul TuránMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bohanon, J.P., Reid, L.: Finite groups with planar subgroup lattices. J. Algebr. Comb. 23(3), 207–223 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Coxeter, H.S.M.: The complete enumeration of finite groups of the form \({R}^2_i=({R}_i{R}_j)^{k_{ij}}=1\). J. Lond. Math. Soc. 1(1), 21–25 (1935)Google Scholar
  5. 5.
    Droms, C.: Infinite-ended groups with planar Cayley graphs. J. Group Theory 9(4), 487–496 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Georgakopoulos, Agelos.: The planar cubic Cayley graphs, ArXiv e-prints (2011)Google Scholar
  7. 7.
    Hao, Y., Gao, X., Luo, Y.: On the Cayley graphs of Brandt semigroups. Commun. Algebr. 39(8), 2874–2883 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kelarev, A.V.: On undirected Cayley graphs. Australas. J. Combin. 25, 73–78 (2002)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kelarev, A.V., Praeger, C.E.: On transitive Cayley graphs of groups and semigroups. Eur. J. Combin. 24(1), 59–72 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kelarev, A.V.: On Cayley graphs of inverse semigroups. Semigroup Forum 72(3), 411–418 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Knauer, K., Knauer, U.: Toroidal embeddings of right groups. Thai J. Math. 8(3), 483–490 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Knauer, U.: Algebraic Graph Theory. Morphisms, Monoids and Matrices, de Gruyter Studies in Mathematics, vol. 41. Walter de Gruyter & Co., Berlin (2011)CrossRefGoogle Scholar
  13. 13.
    Maschke, H.: The representation of finite groups, especially of the rotation groups of the regular bodies of three-and four-dimensional space, by Cayley’s color diagrams. Am. J. Math. 18(2), 156–194 (1896)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sabidussi, G.: On a class of fixed-point-free graphs. Proc. Am. Math. Soc. 9(5), 800–804 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Solomatin, D.V.: Direct products of cyclic semigroups admitting a planar Cayley graph. Sibirskie Ehlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] 3, 238–252 (2006). (in Russian)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Solomatin, D.V.: Semigroups with outerplanar Cayley graphs. Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electron. Math. Rep.] 8, 191–212 (2011). (in Russian)MathSciNetGoogle Scholar
  17. 17.
    Zhang, X.: Clifford semigroups with genus zero, Semigroups, Acts and Categories with Applications to Graphs, Proceedings, Tartu 2007, Mathematics Studies, vol. 3, Estonian Mathematical Society, Tartu 2008, pp. 151–160 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Aix Marseille Université, CNRS, LIF UMR 7279MarseilleFrance
  2. 2.Carl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations