Advertisement

Semigroup Forum

, Volume 90, Issue 3, pp 660–693 | Cite as

Super-Poincaré and Nash-type inequalities for subordinated semigroups

  • Ivan Gentil
  • Patrick MaheuxEmail author
Research Article

Abstract

We prove that if a super-Poincaré inequality is satisfied by an infinitesimal generator \(-A\) of a symmetric contraction semigroup on \(L^2\) and that is contracting on \(L^1\), then it implies a corresponding super-Poincaré inequality for \(-g(A)\) for any Bernstein function \(g\). We also study the converse of this statement. We prove similar results for Nash-type inequalities. We apply our results to Euclidean, Riemannian, hypoelliptic and Ornstein–Uhlenbeck settings.

Keywords

Super-Poincaré inequality Nash-type inequality Symmetric semigroup Subordination in the sense of Bochner Bernstein function Super-Poincaré profile 

Notes

Acknowledgments

The authors thank the anonymous referee for helpful comments on this paper and her/his patience during the submission of this paper. This research was supported in part by the ANR Project EVOL. The second author thanks the CNRS for a period of delegation during which this paper has been completed.

References

  1. 1.
    Bendikov, A.D., Maheux, P.: Nash type inequalities for fractional powers of non-negative self-adjoint operators. Trans. Am. Math. Soc. 359(7), 3085–3097 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bendikov, A., Saloff-Coste, L.: Random walks on groups and discrete subordination. Math. Nachr. 285(5–6), 580–605 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Carlen, E.A., Loss, M.: Sharp constant in Nash’s inequality. Int. Math. Res. Notices 7, 213–215 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cattiaux, P., Guillin, A., Roberto, C.: Poincaré inequality and the \(L^p\) convergence of semi-groups. Electron. Commun. Probab. 15, 270–280 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Coulhon, T.: Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141, 510–539 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  7. 7.
    Grigor’yan, A., Hu, J.: Upper bounds of heat Kernels on doubling spaces. Moscow Math. J. 14(3), 505–563 (2014)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Jacob, N.: Pseudo-Differential Operators and Markov Processes. Vol. 1: Fourier Analysis and Semigroups. Imperial College Press, London (2001)CrossRefGoogle Scholar
  9. 9.
    Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc., New York (1991)Google Scholar
  11. 11.
    Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications. de Gruyter Studies in Mathematics, 37. Walter de Gruyter and Co., Berlin (2010)Google Scholar
  12. 12.
    Schilling, René L., Wang, Jian: Functional inequalities and subordination: stability of Nash and Poincaré inequalities. Math. Z. 272(3–4), 921–936 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Šikić, H., Song, R., Vondraček, Z.: Potential theory of geometric stable processes. Probab. Theory Relat. Fields 135(4), 547–575 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge University Press, Cambridge (1992)Google Scholar
  15. 15.
    Wang, F.-Y.: Functional Inequalities for Dirichlet Operators with Powers (in Chinese). Chinese Sci. Tech. Online (2007). http://www.paper.edu.cn
  16. 16.
    Wang, F.-Y.: Functional inequalities for empty essential spectrum. J. Funct. Anal. 170(1), 219–245 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Wang, F.-Y.: Functional inequalities for the decay of sub-Markov semigroups. Potential Anal. 18(1), 1–23 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang, F.-Y.: Functional Inequalities. Markov Processes and Spectral Theory. Science Press, Beijing (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut Camille JordanUniversité Claude Bernard Lyon 1Villeurbanne cedexFrance
  2. 2.Fédération Denis Poisson, Département de MathématiquesUniversité d’OrléansOrléans cedex 2France

Personalised recommendations