Semigroup Forum

, Volume 88, Issue 3, pp 513–522 | Cite as

David Rees 1918–2013

  • Mark V. Lawson
  • Liam O’Carroll
  • Sarah Rees


Inverse Semigroup Regular Semigroup Semigroup Theory Simple Semigroup Cancellative Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are enormously grateful to all the people who helped in the writing of this tribute: David Easdown; Des FitzGerald; John Fountain; Philip Gale of the National Archives; Victoria Gould; Janet Herrod of Abergavenny Museum; John Hickey; Stuart Margolis; Tim Porter; and Nicholas Rogers RSA, Archivist, Sidney Sussex College, Cambridge. Christopher Hollings deserves a special mention for sharing with us unpublished material which will appear in his forthcoming book on the history of semigroup theory. The books [42, 43, 45] provided important background on the early years of Bletchley Park and the breaking of the Red Enigma cipher, whereas [6] contains accounts of the Newmanry. The Bletchley Park website contains a record of personnel at Bletchley Park during the war and where they worked. The MacTutor History of Mathematics Archive was an excellent source for biographical information on Sandy Green, Douglas Munn, Max Newman, David Rees and Gordon Preston. It also contains an article by Preston on the early history of semigroups. Information on John Herivel and Gordon Welchman may be found on wikipedia. Obituaries to David appeared in the main national British newspapers The Times, The Guardian and The Telegraph. Semigroup Forum did not allow us to include a complete bibliography of David’s work, only allowing us to include the papers we explicitly referred to. All his papers can be found via MathSciNet with the exception of [30, 34]. We also felt we had to mention here David’s one book [37].

David Rees on his election as a Fellow of the Royal Society in 1968. Photograph: Godfrey Argent Studio. The photograph at the beginning of this article shows David Rees.


  1. 1.
    Albert, A.A.: Structure of algebras. AMS, Amsterdam (1939)Google Scholar
  2. 2.
    Allen, : A generalization of the Rees theorem to a class of regular semigroups. Semigroup Forum 2, 321–331 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Allen, D., Rhodes, J.: Synthesis of classical and modern theory of finite semigroups. Adv. Math. 11, 238–266 (1973)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cartan, H., Eilenberg, S.: Homological algebra. The Princeton University Press, Princeton (1956)zbMATHGoogle Scholar
  5. 5.
    Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups, vol. 1. AMS, Amsterdam (1961)zbMATHGoogle Scholar
  6. 6.
    Copeland, J.: Colossus. OUP, Oxford (2006)Google Scholar
  7. 7.
    Green, J.A.: On the structure of semigroups. Ann. of Math. 54, 163–172 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Howie, J.M.: An introduction to semigroups. Academic Press, Waltham (1976)Google Scholar
  9. 9.
    Lawson, M.V.: A correspondence between a class of monoids and self-similar group actions I. Semigroup Forum 76, 489–517 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    McAlister, D.B.: Rees matrix covers for regular semigroups. J. Alg. 89, 264–279 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Perrot, J.-F.: Contribution a l’étude des monoï des syntactiques et de certains groupes associés aux automates finis. Thése, l’Université Paris VI, (1972)Google Scholar
  12. 12.
    Rees, D.: On semi-groups. Proc. Camb. Philos. Soc. 36, 387–400 (1940)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Rees, D.: Note on semi-groups. Proc. Camb. Philos. Soc. 37, 434–435 (1941)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Rees, D.: On the group of a set of partial transformations. J. Lond. Math. Soc. 22, 281–284 (1947)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rees, D.: On the ideal structure of a semi-group satisfying a cancellation law. Quart. J. Math. Oxf. Ser. 19, 101–108 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Rees, D., Green, J.A.: On semi-groups in which \(x^{r}=x\). Proc. Camb. Philos. Soc. 48, 35–40 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rees, D., Northcott, D.G.: Reductions of ideals in local rings. Proc. Camb. Philos. Soc. 50, 145–158 (1954)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rees, D.: Valuations associated with a local ring I. Proc. Lond. Math. Soc. 3(5), 107–128 (1955)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Rees, D.: A note on valuations associated with a local domain. Proc. Camb. Philos. Soc. 51, 252–253 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Rees, D.: Two classical theorems of ideal theory. Proc. Camb. Philos. Soc. 52, 155–157 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Rees, D.: Valuations associated with ideals. Proc. Lond. Math. Soc. 3(6), 161–174 (1956)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Rees, D.: Valuations associated with ideals II. J. Lond. Math. Soc. 31, 221–228 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Rees, D.: Valuations associated with a local ring II. J. Lond. Math. Soc. 31, 228–235 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Rees, D.: A theorem of homological algebra. Proc. Camb. Philos. Soc. 52, 605–610 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Rees, D.: The grade of an ideal or module. Proc. Camb. Philos. Soc. 53, 28–42 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Rees, D.: A note on general ideals. J. Lond. Math. Soc. 32, 181–186 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Rees, D.: A note on form rings and ideals. Mathematika 4, 51–60 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Rees, D.: Polar modules. Proc. Camb. Philos. Soc. 53, 554–567 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Rees, D.: On a problem of Zariski. Ill. J. Math 2, 145–149 (1958)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Rees, D.: Réductions des idéaux et multiplicités dans les anneaux locaux, Séminaire DUBREIL-PISOT (Algèbre et Théorie des Nombres) 13e année, 1959/60, No. 8, 11 Janvier, pp. 6 (1960)Google Scholar
  31. 31.
    Rees, D.: \(\mathfrak{a}\)-transforms of local rings and a theorem on multiplicities of ideals. Proc. Camb. Philos. Soc. 57, 8–17 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Rees, D., Hilton, P.J.: Natural maps of extension functors and a theorem of R. G. Swan. Proc. Camb. Philos. Soc. 57, 489–502 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Rees, D., Sharp, R.Y.: On a theorem of B. Teissier on multiplicities of ideals in local rings. J. Lond. Math. Soc. (2) 18, 449–463 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Rees, D., Absolute integral dependence on an ideal. Institut Mittag-Leffler, report no. 9, pp. 12 (1981)Google Scholar
  35. 35.
    Rees, D.: Rings associated with ideals and analytic spread. Math. Proc. Camb. Philos. Soc. 89, 423–432 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Rees, D.: Generalizations of reductions and mixed multiplicities. J. Lond. Math. Soc. 2(29), 397–414 (1984)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Rees, D.: Lectures on the asymptotic theory of ideals, London Mathematical Society Lecture Note Series, 113. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  38. 38.
    Rees, D., Kirby, D.: Multiplicities in graded rings I. The general theory. Contemp. Math. 159 Amer. Math. Soc., Providence, RI, 209–267 (1994)Google Scholar
  39. 39.
    Rees, D., Kirby, D.: Multiplicities in graded rings II. Integral equivalence and the Buchsbaum-Rim multiplicity. Math. Proc. Camb. Philos. Soc. 119, 425–445 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Rees, D., Kirby, D.: The multiplicity of a set of homogeneous polynomials over a commutative ring. Math. Proc. Camb. Philos. Soc. 124, 97–105 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Rhodes, J.: Book review: The Algebraic Theory of Semigroups, by A. H. Clifford and G. B. Preston. Semigroups, by E. S. Ljapin. The Theory of Finitely Generated Commutative Semigroups, by Laszlo Redei. Elements of Compact Semigroups, by Karl Heinrich Hofmann and Paul. Bull. Amer. Math. Soc. 76, 675–683 (1970)Google Scholar
  42. 42.
    Sebag-Montifiore, H.: Enigma: the battle for the code. New Edition, Phoenix (2004)Google Scholar
  43. 43.
    Smith, M.: Station X, Channel 4 Books, (1998)Google Scholar
  44. 44.
    Weil, A.: The foundations of algebraic geometry, vol. 29. American Mathematical Society Colloquium Publications, Providence (1946)Google Scholar
  45. 45.
    Welchman, G.: The hut six story. M & M Baldwin (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Heriot-Watt UniversityEdinburghUK
  2. 2.Edinburgh UniversityEdinburghUK
  3. 3.Newcastle UniversityTyne and WearUK

Personalised recommendations