Semigroup Forum

, Volume 89, Issue 2, pp 394–402 | Cite as

The generalization of two basic results for orthodox semigroups

  • Xiangjun Kong
  • Fanwei Meng
Research Article


A characterization of orthodox transversals is given and the maximum idempotent-separating congruence concerned with quasi-ideal orthodox transversals is explored. The well-known results about orthodox semigroups are generalized and enriched.


Regular semigroup Orthodox semigroup Orthodox transversal Maximum idempotent-separating congruence 



The authors would like to express their sincere thanks to M. Jackson and the referees for valuable suggestions and corrections. The first author is a postdoctoral researcher of the Postdoctoral Station of Qufu Normal University. The research is partially supported by the National Natural Science Foundation of China (11171178), the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province, Research Fund for the Doctoral Program of Higher Education of China (20133705120002), China Postdoctoral Science Foundation (2013M541883), Shandong Province Postdoctoral Innovation Fund (201303075), A Project of Shandong Province Higher Educational Science and Technology Program (J13LI07), Doctoral Scientific Research Start Foundation of Qufu Normal University (20110129) and Scientific Research Foundation of Qufu Normal University (XJ201215).


  1. 1.
    Blyth, T.S., Almeida Santos, M.H.: Amenable orders associated with inverse transversals. J. Algebra 240(1), 143–164 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blyth, T.S., Almeida Santos, M.H.: On amenable orders and inverse transversals. Commun. Algebra 39(6), 2189–2209 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blyth, T.S., Almeida Santos, M.H.: \(\cal H\)-Cohesive order associated with inverse transversals. Commun. Algebra 40(8), 2771–2785 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blyth, T.S., McFadden, R.B.: Regular semigroups with a multiplicative inverse transversal. Proc. R. Soc. Edinb. 92A, 253–270 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, J.F.: On regular semigroups with orthodox transversals. Commun. Algebra 27, 4275–4288 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, J.F., Guo, Y.Q.: Orthodox transversals of regular semigroups. Int. J. Algebra Comput. 11(2), 269–279 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gigon, R.S.: Rectangular group congruences on a semigroup. Semigroup Forum 87(1), 120–128 (2013)Google Scholar
  8. 8.
    Howie, J.M.: An Introduction to Semigroup Theory. Academic Press, London (1976)zbMATHGoogle Scholar
  9. 9.
    Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)zbMATHGoogle Scholar
  10. 10.
    Kong, X.J.: Regular semigroups with quasi-ideal orthodox transversals. Semigroup Forum 74(2), 247–258 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kong, X.J.: On generalized orthodox transversals. Commun. Algebra 42(2), 1431–1447 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kong, X.J., Luo, Y.F.: Regular semigroups with left simplistic orthodox transversals (in Chinese). Sci. Sin. Math. 41(8), 745–757 (2011)CrossRefGoogle Scholar
  13. 13.
    Kong, X.J., Zhao, X.: A new construction for regular semigroups with quasi-ideal orthodox transversals. J. Aust. Math. Soc. 86(2), 177–187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    McAlister, D.B., McFadden, R.B.: Regular semigroups with inverse transversals. Q. J. Math. 34(2), 459–474 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Saito, T.: Construction of regular semigroups with inverse transversals. Proc. Edinb. Math. Soc. 32, 41–51 (1989)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesQufu Normal UniversityQufu People’s Republic of China

Personalised recommendations