Advertisement

Semigroup Forum

, Volume 88, Issue 2, pp 479–511 | Cite as

Diffusion processes on an interval under linear moment conditions

  • Delio MugnoloEmail author
  • Serge Nicaise
RESEARCH ARTICLE

Abstract

We discuss a class of linear and nonlinear diffusion-type partial differential equations on a bounded interval and discuss the possibility of replacing the boundary conditions by certain linear conditions on the moments of order 0 (the total mass) and of another arbitrarily chosen order n. Each choice of n induces the addition of a certain potential in the equation, the case of zero potential arising exactly in the special case of n=1 corresponding to a condition on the barycenter. In the linear case we exploit smoothing properties and perturbation theory of analytic semigroups to obtain well-posedness for the classical heat equation (with said conditions on the moments). Long time behavior is studied for both the linear heat equation with potential and certain nonlinear equations of porous medium or fast diffusion type. In particular, we prove polynomial decay in the porous medium range and exponential decay in the fast diffusion range, respectively.

Keywords

Nonlocal conditions for PDEs Porous medium equation Heat equation Subdifferentials 

References

  1. 1.
    Arendt, W., Batty, C.J.K.: Rank-1 perturbations of cosine functions and semigroups. J. Funct. Anal. 238, 340–352 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96. Birkhäuser, Basel (2001) CrossRefzbMATHGoogle Scholar
  3. 3.
    Bouziani, A., Benouar, N.E.: Problème mixte avec conditions intégrales pour une classe d’équations hyperboliques. Bull. Belg. Math. Soc. 3, 137–145 (1996) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bobrowski, A., Mugnolo, D.: On moment preserving cosine families and semigroups in C[0,1]. J. Evol. Equ. 13, 715–735 (2013). doi: 10.1007/s00028-013-0199-x CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brézis, H.: Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973) zbMATHGoogle Scholar
  6. 6.
    Cannon, J.R.: The solution of the heat equation subject to the specification of energy. Q. Appl. Math. 21, 155–160 (1963) MathSciNetGoogle Scholar
  7. 7.
    Crouzeix, M.: Operators with numerical range in a parabola. Arch. Math. 82, 517–527 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Maurin, K.: Abbildungen vom Hilbert–Schmidtschen Typus und ihre Anwendungen. Math. Scand. 9, 359–371 (1961) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Mugnolo, D., Nicaise, S.: Well-posedness and spectral properties of heat and wave equations with non-local conditions. Submitted Google Scholar
  10. 10.
    Mugnolo, D., Pröpper, R.: Gradient systems on networks. Discrete Contin. Dyn. Syst. 2011, Supplement (2011). 1078–1090 Google Scholar
  11. 11.
    Nittka, R.: Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains. PhD thesis, Universität Ulm (2010) Google Scholar
  12. 12.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Showalter, R.E.: Monotone Operator in Banach Space and Partial Differential Equations. Math. Surveys and Monographs, vol. 49. Amer. Math. Soc., Providence (1997) Google Scholar
  14. 14.
    Vázquez, J.L.: Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium. Trans. Am. Math. Soc. 277, 507–527 (1983) CrossRefzbMATHGoogle Scholar
  15. 15.
    Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations—Equations of Porous Medium Type. Oxford Lect. Ser. Math. and Its Appl., vol. 33. Oxford Univ. Press, Oxford (2006) CrossRefzbMATHGoogle Scholar
  16. 16.
    Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford Math. Monogr. Oxford Univ. Press, Oxford (2007) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institut für AnalysisUniversität UlmUlmGermany
  2. 2.LAMAV, FR CNRS 2956, ISTVUniversité de Valenciennes et du Hainaut CambrésisValenciennes Cedex 9France

Personalised recommendations