Semigroup Forum

, Volume 89, Issue 1, pp 280–291 | Cite as

Embedding of a restriction semigroup into a W-product

RESEARCH ARTICLE

Abstract

A necessary and sufficient condition is provided for a (two-sided) restriction semigroup to be embeddable in a W-product of a semilattice by a monoid.

Keywords

Restriction semigroup (weakly E-ample semigroup) W-product 

References

  1. 1.
    Fountain, J., Gomes, G.M.S.: Proper left type-A monoids revisited. Glasg. Math. J. 35, 293–306 (1993) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Fountain, J., Gomes, G.M.S., Gould, V.: The free ample monoid. Int. J. Algebra Comput. 19, 527–554 (2009) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Gomes, G.M.S., Szendrei, M.B.: Almost factorizable weakly ample semigroups. Commun. Algebra 35, 3503–3523 (2007) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Gould, V.: Notes on restriction semigroups and related structures; formerly (weakly) left E-ample semigroups. http://www-users.york.ac.uk/~varg1/gpubs.htm
  5. 5.
    Gould, V.: Restriction and Ehresmann semigroups. In: Advances in Algebraic Structures, Proceedings of the International Conference on Algebra 2010, pp. 265–288. World Scientific, Singapore (2012) Google Scholar
  6. 6.
    Gould, V., Szendrei, M.B.: Proper restriction semigroups—semidirect products and W-products. Acta Math. Hung. (2013). doi:10.1007/s10474-013-0322-z MathSciNetGoogle Scholar
  7. 7.
    Hollings, C.D.: From right PP monoids to restriction semigroups: a survey. Eur. J. Pure Appl. Math. 2(1), 21–57 (2009) MATHMathSciNetGoogle Scholar
  8. 8.
    Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon, New York (1995) MATHGoogle Scholar
  9. 9.
    McAlister, D.B.: Groups, semilattices and inverse semigroups. Trans. Am. Math. Soc. 192, 227–244 (1974) MATHMathSciNetGoogle Scholar
  10. 10.
    McAlister, D.B.: Groups, semilattices and inverse semigroups II. Trans. Am. Math. Soc. 196, 351–370 (1974) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Munn, W.D.: A note on E-unitary inverse semigroups. Bull. Lond. Math. Soc. 8, 71–76 (1976) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Szendrei, M.B.: Proper covers of restriction semigroups and W-products. Int. J. Algebra Comput. 22, 1250024 (2012) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Szendrei, M.B.: Embedding into almost left factorizable restriction semigroups. Commun. Algebra 41, 1458–1483 (2013) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations