Semigroup Forum

, Volume 88, Issue 1, pp 11–20 | Cite as

Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations

RESEARCH ARTICLE

Abstract

We prove that the numerical semigroups associated to the combinatorial configurations satisfy a family of linear, non-homogeneous, symmetric patterns. We use these patterns to prove an upper bound of the conductor and we also give an upper bound of the multiplicity. Also, we compare bounds of the conductor of numerical semigroups associated to balanced configurations, and to configurations with coprime parameters. The proof of the latter involves a bound of the conductor of prime power generated numerical semigroups.

Keywords

Numerical semigroup Combinatorial configuration Partial linear space Linear pattern Prime power generator 

References

  1. 1.
    Bras-Amorós, M., García-Sánchez, P.A.: Patterns on numerical semigroups. Linear Algebra Appl. 414, 652–669 (2006) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bras-Amorós, M., García-Sánchez, P.A., Vico-Oton, A.: Non-homogeneous patterns on numerical semigroups. Int. J. Algebra Comput. (2013, accepted). arXiv:1211.0895
  3. 3.
    Bras-Amorós, M., Stokes, K.: The semigroup of combinatorial configurations. Semigroup Forum 84(1), 91–96 (2012) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Davydov, A.A., Faina, G., Giulietti, M., Marcugini, S., Pambianco, F.: On constructions and parameters of symmetric configurations v k (2012). arXiv:1203.0709v1
  5. 5.
    Gropp, H.: On the existence and non-existence of configurations n k. J. Comb. Inf. Syst. Sci. 15, 34–48 (1990) MATHMathSciNetGoogle Scholar
  6. 6.
    Gropp, H.: Nonsymmetric configurations with line size k=4. Electron. Notes Discrete Math. 8, 42–45 (2001) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gropp, H.: Configurations. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 352–355. CRC Press, Boca Raton (2007) Google Scholar
  8. 8.
    Grünbaum, B.: Configurations of Points and Lines. Am. Math. Soc., Providence (2009) MATHGoogle Scholar
  9. 9.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Springer, New York (2009) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden
  2. 2.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations