Semigroup Forum

, Volume 88, Issue 1, pp 11–20 | Cite as

Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations

  • Klara Stokes
  • Maria Bras-Amorós


We prove that the numerical semigroups associated to the combinatorial configurations satisfy a family of linear, non-homogeneous, symmetric patterns. We use these patterns to prove an upper bound of the conductor and we also give an upper bound of the multiplicity. Also, we compare bounds of the conductor of numerical semigroups associated to balanced configurations, and to configurations with coprime parameters. The proof of the latter involves a bound of the conductor of prime power generated numerical semigroups.


Numerical semigroup Combinatorial configuration Partial linear space Linear pattern Prime power generator 



The authors are grateful for many helpful discussions held with Ralf Fröberg and Christian Gottlieb. They also want to thank Fernando Torres for many fruitful comments, and an anonymous referee for the idea to construct combinatorial configurations from finite affine planes. The first author is financed by the Swedish government through the National Graduate School in Computer Science (CUGS). Partial support by the Spanish MEC projects ARES (CONSOLIDER INGENIO 2010 CSD2007-00004), RIPUP (TIN2009-11689) and ICWT (TIN2012-32757), is acknowledged.


  1. 1.
    Bras-Amorós, M., García-Sánchez, P.A.: Patterns on numerical semigroups. Linear Algebra Appl. 414, 652–669 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bras-Amorós, M., García-Sánchez, P.A., Vico-Oton, A.: Non-homogeneous patterns on numerical semigroups. Int. J. Algebra Comput. (2013, accepted). arXiv:1211.0895
  3. 3.
    Bras-Amorós, M., Stokes, K.: The semigroup of combinatorial configurations. Semigroup Forum 84(1), 91–96 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Davydov, A.A., Faina, G., Giulietti, M., Marcugini, S., Pambianco, F.: On constructions and parameters of symmetric configurations v k (2012). arXiv:1203.0709v1
  5. 5.
    Gropp, H.: On the existence and non-existence of configurations n k. J. Comb. Inf. Syst. Sci. 15, 34–48 (1990) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Gropp, H.: Nonsymmetric configurations with line size k=4. Electron. Notes Discrete Math. 8, 42–45 (2001) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gropp, H.: Configurations. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 352–355. CRC Press, Boca Raton (2007) Google Scholar
  8. 8.
    Grünbaum, B.: Configurations of Points and Lines. Am. Math. Soc., Providence (2009) zbMATHGoogle Scholar
  9. 9.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Springer, New York (2009) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden
  2. 2.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations