Semigroup Forum

, Volume 84, Issue 1, pp 91–96 | Cite as

The semigroup of combinatorial configurations

  • Maria Bras-Amorós
  • Klara Stokes


We elaborate on the existence and construction of the so-called combinatorial configurations. The main result is that for fixed degrees the existence of such configurations is given by a numerical semigroup. The proof is constructive giving a method to obtain combinatorial configurations with parameters large enough.


Combinatorial configuration Partial linear space Combinatorial design Numerical semigroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 160–193. Chapman & Hall/CRC Press, London/Boca Raton (2007). Kenneth H. Rosen Google Scholar
  2. 2.
    Betten, A., Brinkmann, G., Pisanski, T.: Counting symmetric configurations v 3. In: Proceedings of the 5th Twente Workshop on Graphs and Combinatorial Optimization, Enschede, 1997, vol. 99, pp. 331–338 (2000) Google Scholar
  3. 3.
    De Clerck, F., Thas, J.A., Van Maldeghem, H.: Generalized Polygons and Semipartial Geometries (1996). EIDMA minicourse Google Scholar
  4. 4.
    Domingo-Ferrer, J., Bras-Amorós, M., Wu, Q., Manjón, J.: User-private information retrieval based on a peer-to-peer community. Data Knowl. Eng. 68(11), 1237–1252 (2009) CrossRefGoogle Scholar
  5. 5.
    Gropp, H.: Non-symmetric configurations with deficiencies 1 and 2. Ann. Discrete Math. 52, 227–239 (1992) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gropp, H.: Nonsymmetric configurations with natural index. Discrete Math. 124(1–3), 87–98 (1994) Graphs and combinatorics (Qawra, 1990) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gropp, H.: Existence and enumeration of configurations. Bayreuth. Math. Schr., 74, 123–129 (2005) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gropp, H.: Configurations. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 353–355. Chapman & Hall/CRC Press, London/Boca Raton (2007). Kenneth H. Rosen Google Scholar
  9. 9.
    Grünbaum, B.: Configurations of Points and Lines. Graduate Studies in Mathematics, vol. 103. Am. Math. Soc., Providence (2009) zbMATHGoogle Scholar
  10. 10.
    Kaski, P., Östergård, P.R.J.: Classification Algorithms for Codes and Designs. Algorithms and Computation in Mathematics, vol. 15. Springer, Berlin (2006). With 1 DVD-ROM (Windows, Macintosh and UNIX) zbMATHGoogle Scholar
  11. 11.
    Kaski, P., Östergård, P.R.J.: There exists no symmetric configuration with 33 points and line size 6. Australas. J. Combin. 38, 273–277 (2007) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Developments in Mathematics, vol. 20. Springer, New York (2009) zbMATHCrossRefGoogle Scholar
  13. 13.
    Sachs, H.: Regular graphs with given girth and restricted circuits. J. Lond. Math. Soc. 38, 423–429 (1963) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations