Semigroup Forum

, Volume 84, Issue 2, pp 301–307 | Cite as

Metrizability of Clifford topological semigroups

  • Taras Banakh
  • Oleg Gutik
  • Oles Potiatynyk
  • Alex Ravsky
RESEARCH ARTICLE
  • 52 Downloads

Abstract

We prove that a countably compact Clifford topological semigroup S is metrizable if and only if the set E={eS:ee=e} of idempotents of S is a metrizable Gδ-set in S.

Keywords

Clifford semigroup Metrizable topological semigroup Topologically periodic semigroup Countably compact space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkhangel’skiĭ, A.V.: The structure and classification of topological spaces and cardinal invariants. Usp. Mat. Nauk 33, 29–84 (1978) (in Russian) Google Scholar
  2. 2.
    Arhangel’skii, A., Tkachenko, M.: Topological Groups and Related Structures. Atlantis Press/World Sci. Publ., Paris (2008) MATHCrossRefGoogle Scholar
  3. 3.
    Banakh, T.: On cardinal invariants and metrizability of topological inverse Clifford semigroups. Topol. Appl. 128(1), 13–48 (2003) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Banakh, T., Gutik, O.: On the continuity of the inversion in countably compact inverse topological semigroups. Semigroup Forum 68, 411–418 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bokalo, B., Guran, I.: Sequentially compact Hausdorff cancellative semigroup is a topological group. Mat. Stud. 6, 39–40 (1996) MathSciNetMATHGoogle Scholar
  6. 6.
    Gruenhage, G.: Generalized metric spaces. In: Handbook of Set-Theoretic Topology, pp. 423–501. North-Holland, Amsterdam (1984) Google Scholar
  7. 7.
    Gutik, O., Pagon, D., Repovš, D.: The continuity of the inversion and the structure of maximal subgroups in countably compact topological semigroups. Acta Math. Hung. 124(3), 201–214 (2009) MATHCrossRefGoogle Scholar
  8. 8.
    Koch, R.J., Wallace, A.D.: Notes on inverse semigroups. Rev. Roum. Math. Pures Appl. 9(1), 19–24 (1964) MathSciNetMATHGoogle Scholar
  9. 9.
    Kruming, P.D.: Structually ordered semigroups. Izv. Vysš. Učebn. Zaved., Mat. 6(43), 78–87 (1964) MathSciNetGoogle Scholar
  10. 10.
    Morita, K.: Products of normal spaces with metric spaces. Math. Ann. 154, 365–382 (1964) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Taras Banakh
    • 1
    • 2
  • Oleg Gutik
    • 2
  • Oles Potiatynyk
    • 2
  • Alex Ravsky
    • 3
  1. 1.Instytut MatematykiJan Kochanowski UniversityKielcePoland
  2. 2.Faculty of Mechanics and MathematicsIvan Franko National University of LvivLvivUkraine
  3. 3.Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of Ukrainian Academy of SciencesLvivUkraine

Personalised recommendations