Semigroup Forum

, 83:123 | Cite as

Characterizing compact Clifford semigroups that embed into convolution and functor-semigroups

  • Taras Banakh
  • Matija Cencelj
  • Olena Hryniv
  • Dušan Repovš


We study algebraic and topological properties of the convolution semigroup of probability measures on a topological groups and show that a compact Clifford topological semigroup S embeds into the convolution semigroup P(G) over some topological group G if and only if S embeds into the semigroup \(\exp(G)\) of compact subsets of G if and only if S is an inverse semigroup and has zero-dimensional maximal semilattice. We also show that such a Clifford semigroup S embeds into the functor-semigroup F(G) over a suitable compact topological group G for each weakly normal monadic functor F in the category of compacta such that F(G) contains a G-invariant element (which is an analogue of the Haar measure on G).


Convolution semigroup Global semigroup Hypersemigroup Clifford semigroup Regular semigroup Topological group Radon measure Weakly normal monadic functor 


  1. 1.
    Banakh, T.: Topology of spaces of probability measures, II. Mat. Stud. 5, 88–106 (1995) (in Russian) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Banakh, T., Gavrylkiv, V.: Algebra in superextensions of groups, II: cancelativity and centers. Algebra Discrete Math. 4, 1–14 (2008) Google Scholar
  3. 3.
    Banakh, T., Gavrylkiv, V.: Algebra in the superextensions of groups: minimal left ideals. Mat. Stud. 31(2), 142–148 (2009) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Banakh, T., Gavrylkiv, V.: Algebra in the superextensions of twinic groups. Diss. Math. 473 (2010), 74 p. Google Scholar
  5. 5.
    Banakh, T., Hryniv, O.: Embedding topological semigroups into the hyperspaces over topological groups. Acta Univ. Carol. Math. Phys. 48(2), 3–18 (2007) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Banakh, T., Gavrylkiv, V., Nykyforchyn, O.: Algebra in superextensions of groups. I: zeros and commutativity. Algebra Discrete Math. 3, 1–29 (2008) MathSciNetGoogle Scholar
  7. 7.
    Bershadskii, S.G.: Imbeddability of semigroups in a global supersemigroup over a group. In: Semigroup Varieties and Semigroups of Endomorphisms, pp. 47–49. Leningrad. Gos. Ped. Inst., Leningrad (1979) Google Scholar
  8. 8.
    Bilyeu, R.G., Lau, A.: Representations into the hyperspace of a compact group. Semigroup Forum 13, 267–270 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. Math. Surv., No. 7, Amer. Math. Soc., Providence (1964) Google Scholar
  10. 10.
    Fedorchuk, V.V.: Functors of probability measures in topological categories. J. Math. Sci. 91(4), 3157–3204 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gavrylkiv, V.: Right-topological semigroup operations on inclusion hyperspaces. Mat. Stud. 29(1), 18–34 (2008) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Heyer, H.: Probability Measures on Locally Compact Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 94. Springer, Berlin (1977) zbMATHGoogle Scholar
  13. 13.
    Hryniv, O.: Universal objects in some classes of Clifford topological inverse semigroups. Semigroup Forum 75(3), 683–689 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Parthasarathy, K.R.: Probability Measures on Metric Spaces. Amer. Math. Soc., Providence (2005) zbMATHGoogle Scholar
  15. 15.
    Petrich, M.: Introduction to Semigroups. Charles E. Merrill Publishing, Columbus (1973) zbMATHGoogle Scholar
  16. 16.
    Pym, J.S.: Idempotent measures on semigroups. Pac. J. Math. 12, 685–698 (1962) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Teleiko, A., Zarichnyi, M.: Categorial Topology of Compact Hausdorff Spaces. VNTL Publ., Lviv (1999) Google Scholar
  18. 18.
    Tortrat, A.: Lois de probabilité sur un espace topologique complètement régulier et produits infinis à termes indépendants dans un groupe topologique. Ann. Inst. H. Poincaré Sect. B 1, 217–237 (1964/1965) MathSciNetGoogle Scholar
  19. 19.
    Trnkova, V.: On a representation of commutative semigroups. Semigroup Forum 10(3), 203–214 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Wendel, J.G.: Haar measure and the semigroup of measures on a compact group. Proc. Am. Math. Soc. 5, 923–929 (1954) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Taras Banakh
    • 1
    • 2
  • Matija Cencelj
    • 3
  • Olena Hryniv
    • 2
  • Dušan Repovš
    • 4
  1. 1.Instytut MatematykiJan Kochanowski UniversityKielcePoland
  2. 2.Department of MathematicsIvan Franko National University of LvivLvivUkraine
  3. 3.Institute of Mathematics, Physics and Mechanics, and Faculty of EducationUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Faculty of Mathematics and Physics, and Faculty of EducationUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations