Semigroup Forum

, Volume 82, Issue 2, pp 242–251 | Cite as

Optimization of classifiers for data mining based on combinatorial semigroups

RESEARCH ARTICLE

Abstract

The aim of the present article is to obtain a theoretical result essential for applications of combinatorial semigroups for the design of multiple classification systems in data mining. We consider a novel construction of multiple classification systems, or classifiers, combining several binary classifiers. The construction is based on combinatorial Rees matrix semigroups without any restrictions on the sandwich-matrix. Our main theorem gives a complete description of all optimal classifiers in this novel construction.

Keywords

Combinatorial semigroups Data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auinger, K., Hall, T.E., Reilly, N.R., Zhang, S.: Congruences on the lattice of pseudovarieties of finite semigroups. Int. J. Algebra Comput. 7(4), 433–455 (1997) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cazaran, J., Kelarev, A.V., Quinn, S.J., Vertigan, D.: An algorithm for computing the minimum distances of extensions of BCH codes embedded in semigroup rings. Semigroup Forum 73, 317–329 (2006) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Davey, B.A., Jackson, M., Maróti, M., McKenzie, R.N.: Principal and syntactic congruences in congruence-distributive and congruence-permutable varieties. J. Aust. Math. Soc. 85(1), 59–74 (2008) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Easdown, D., Munn, W.D.: Trace functions on inverse semigroup algebras. Bull. Aust. Math. Soc. 52(3), 359–372 (1995) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Hall, T.E.: The radical of the algebra of any finite semigroup over any field. J. Aust. Math. Soc. Ser. A 11, 350–352 (1970) CrossRefMATHGoogle Scholar
  6. 6.
    Hall, T.E.: Biprefix codes, inverse semigroups and syntactic monoids of injective automata. Theor. Comput. Sci. 32(1–2), 201–213 (1984) CrossRefMATHGoogle Scholar
  7. 7.
    Hall, T.E.: Amalgamation for inverse and generalized inverse semigroups. Trans. Am. Math. Soc. 310, 313–323 (1988) CrossRefMATHGoogle Scholar
  8. 8.
    Hall, T.E., Imaoka, T.: Representations and amalgamation of generalized inverse ∗-semigroups. Semigroup Forum 58, 126–141 (1999) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon, Oxford (1995) MATHGoogle Scholar
  10. 10.
    Jackson, M., Volkov, M.: Undecidable problems for completely 0-simple semigroups. J. Pure Appl. Algebra 213(10), 1961–1978 (2009) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kelarev, A.V.: Ring Constructions and Applications. World Scientific, Singapore (2002) MATHGoogle Scholar
  12. 12.
    Kelarev, A.V.: Graph Algebras and Automata. Dekker, New York (2003) MATHGoogle Scholar
  13. 13.
    Kelarev, A.V., Göbel, R., Rangaswamy, K.M., Schultz, P., Vinsonhaler, C.: Abelian Groups Rings and Modules. Contemporary Mathematics, vol. 273. American Mathematical Society, Providence (2001) MATHGoogle Scholar
  14. 14.
    Kelarev, A.V., Passman, D.S.: A description of incidence rings of group automata. Contemp. Math. 456, 27–33 (2008) MathSciNetGoogle Scholar
  15. 15.
    Kelarev, A.V., Praeger, C.E.: On transitive Cayley graphs of groups and semigroups. Eur. J. Comb. 24(1), 59–72 (2003) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kelarev, A., Ryan, J., Yearwood, J.: Cayley graphs as classifiers for data mining: The influence of asymmetries. Discrete Math. 309(17), 5360–5369 (2009) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kelarev, A.V., Sokratova, O.V.: On congruences of automata defined by directed graphs. Theor. Comput. Sci. 301, 31–43 (2003) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kelarev, A.V., Yearwood, J.L., Mammadov, M.A.: A formula for multiple classifiers in data mining based on Brandt semigroups. Semigroup Forum 78(2), 293–309 (2009) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Kelarev, A.V., Watters, P., Yearwood, J.L.: Rees matrix construction for clustering of data. J. Aust. Math. Soc. 87, 377–393 (2009) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Kelarev, A.V., Yearwood, J.L., Vamplew, P.W.: A polynomial ring construction for classification of data. Bull. Aust. Math. Soc. 79, 213–225 (2009) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Okniński, J.: Semigroup Algebras. Dekker, New York (1991) Google Scholar
  22. 22.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier/Morgan Kaufman, Amsterdam/San Mateo (2005) MATHGoogle Scholar
  23. 23.
    Yearwood, J.L., Mammadov, M.A.: Classification Technologies: Optimization Approaches to Short Text Categorization. Idea Group Inc., Hershey (2010) Google Scholar
  24. 24.
    Yearwood, J., Webb, D., Vamplew, P., Ma, L., Ofoghi, B., Kelarev, A.: Applying clustering and ensemble clustering approaches to phishing profiling. In: Eighth Australasian Data Mining Conference, AusDM 2009, Melbourne, Australia, December 2009. Conferences in Research and Practice in Information Technology, vol. 101, pp. 25–34 (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. V. Kelarev
    • 1
  • J. L. Yearwood
    • 1
  • P. A. Watters
    • 1
  1. 1.School of Science, Information Technology and EngineeringUniversity of BallaratBallaratAustralia

Personalised recommendations