Advertisement

Semigroup Forum

, Volume 82, Issue 2, pp 296–306 | Cite as

Quasi-equational bases for graphs of semigroups, monoids and groups

  • Michał M. StronkowskiEmail author
Open Access
Research Article

Abstract

The graph of an algebra A is the relational structure G(A) in which the relations are the graphs of the basic operations of A. Let denote by Open image in new window the class of all graphs of algebras from a class Open image in new window . We prove that if Open image in new window is a class of semigroups possessing a nontrivial member with a neutral element, then Open image in new window does not have finite quasi-equational basis. We deduce that, for a class Open image in new window of monoids or groups with a nontrivial member, Open image in new window also does not have finite quasi-equational basis.

Keywords

Graphs of semigroups Finite axiomatizability Finite quasi-equational bases Quasivarieties of relational structures 

References

  1. 1.
    Atserias, A.: On digraph coloring problems and treewidth duality. Eur. J. Combin. 29(4), 796–820 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berman, J.: A proof of Lyndon’s finite basis theorem. Discrete Math. 29(3), 229–233 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Blok, W.J., Pigozzi, D.: Algebraic semantics for universal Horn logic without equality. In: Universal Algebra and Quasigroup Theory, Jadwisin, 1989. Res. Exp. Math., vol. 19, pp. 1–56. Heldermann, Berlin (1992) Google Scholar
  4. 4.
    Bulatov, A.A., Krokhin, A., Larose, B.: Dualities for constraint satisfaction problems. In: Creignou, N., et al. (eds.) Complexity of Constraints. An Overview of Current Research Themes. Lecture Notes in Computer Science, vol. 5250, pp. 93–124. Springer, Berlin (2008) Google Scholar
  5. 5.
    Caicedo, X.: Finitely axiomatizable quasivarieties of graphs. Algebra Universalis 34(2), 314–321 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Casperson, D., Hyndman, J.: Primitive positive formulas preventing a finite basis of quasi-equations. Int. J. Algebra Comput. 19(7), 925–935 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gorbunov, V.A.: Quasiidentities of two-element algebras. Algebra Logic 22(2), 83–88 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Consultants Bureau, New York (1998) zbMATHGoogle Scholar
  9. 9.
    Gornostaev, O.M.: Quasivarieties of models embeddable into semigroups. Deposited at the All-Union Institute of Scientific and Technical Information, No. 1812-82 (1982) (in Russian) Google Scholar
  10. 10.
    Gornostaev, O.M.: Quasivarieties generated by classes of models. Deposited at the All-Union Institute of Scientific and Technical Information, No. 2206-85 (1985) (in Russian) Google Scholar
  11. 11.
    Jackson, M., Volkov, M.: Relatively inherently nonfinitely q-based semigroups. Trans. Am. Math. Soc. 361(4), 2181–2206 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kleitman, D.J., Rothschild, B.R., Spencer, J.H.: The number of semigroups of order n. Proc. Am. Math. Soc. 55(1), 227–232 (1976) zbMATHMathSciNetGoogle Scholar
  13. 13.
    Lyndon, R.C.: Identities in two-valued calculi. Trans. Am. Math. Soc. 71(3), 457–465 (1951) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Mal’cev, A.I.: Algebraic Systems. Springer, New York (1973) zbMATHGoogle Scholar
  15. 15.
    Nešetřil, J., Pultr, A.: On classes of relations and graphs determined by subobjects and factorobjects. Discrete Math. 22(3), 287–300 (1978) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Nurakunov, A.M.: Quasivarieties generated by two-element algebras revisited. In: Blatt, H.-P., et al. (eds.) Analytical and Approximate Methods. Proceedings of the International Conference at the Kyrgyz-Russian-Slavic University Bishkek, Kyrgyzstan, September 23–24, 2002. Berichte aus der Mathematik. Shaker Verlag, Aachen (2003) Google Scholar
  17. 17.
    Rautenberg, W.: 2-element matrices. Stud. Log. 40(4), 315–353 (1981) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rossman, B.: Homomorphism preservation theorems. J. ACM 55(3), 1–54 (2008) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Vaught, R.L.: Remarks on universal classes of relational systems. Nederl. Akad. Wetensch. Proc. Ser. A 57 (1954). Indag. Math. 16, 589–591 (1954) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
  2. 2.Eduard Čech CenterCharles UniversityPragueCzech Republic

Personalised recommendations