Advertisement

Semigroup Forum

, Volume 81, Issue 3, pp 551–554 | Cite as

On divisors of semigroups of order-preserving mappings of a finite chain

  • V. H. FernandesEmail author
  • M. V. Volkov
Short Note

Abstract

We show that if a semigroup T divides a semigroup of full order preserving transformations of a finite chain, then so does any semidirect product ST where S is a finite semilattice whose natural order makes S a chain.

Keywords

Semigroup of order preserving transformations Divisor Semidirect product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almeida, J., Higgins, P.M.: Monoids respecting n-chains of intervals. J. Algebra 187, 183–202 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Almeida, J., Higgins, P.M., Volkov, M.V.: The gap between partial and full: an addendum. Int. J. Algebra Comput. 11, 131–135 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Almeida, J., Volkov, M.V.: The gap between partial and full. Int. J. Algebra Comput. 8, 399–430 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aĭzenštat, A.Ya.: The defining relations of the endomorphism semigroup of a finite linearly ordered set. Sib. Mat. 3, 161–169 (1962) (in Russian) Google Scholar
  5. 5.
    Aĭzenštat, A.Ya.: Homomorphisms of semigroups of endomorphisms of ordered sets. Uch. Zap. Leningr. Gos. Pedagog. Inst. 238, 38–48 (1962) (in Russian) Google Scholar
  6. 6.
    Fernandes, V.H.: Semigroups of order-preserving mappings on a finite chain: a new class of divisors. Semigroup Forum 54, 230–236 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fernandes, V.H.: A new class of divisors of semigroups of isotone mappings of finite chains. Izv. VUZ Mat. (3), 51–59 (2002) (in Russian). English translation in: Russ. Math. Izv. VUZ 46 (3), 47–55 (2002) Google Scholar
  8. 8.
    Fernandes, V.H., Jesus, M.M., Maltcev, V., Mitchell, J.D.: Endomorphisms of the semigroup of order-preserving mappings. Semigroup Forum (2010). doi: 10.1007/s00233-010-9220-7
  9. 9.
    Fremlin, D.H., Higgins, P.M.: Deciding some embeddability problems for semigroups of mappings. In: M.P. Smith, et al. (eds.) Semigroups, pp. 87–95. World Scientific, Singapore (2000) Google Scholar
  10. 10.
    Gomes, G.M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 45, 272–282 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Higgins, P.M.: Divisors of semigroups of order-preserving mappings on a finite chain. Int. J. Algebra Comput. 5, 725–742 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Howie, J.M.: Product of idempotents in certain semigroups of transformations. Proc. Edinb. Math. Soc. 17, 223–236 (1971) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lavers, T., Solomon, A.: The endomorphisms of a finite chain form a Rees congruence semigroup. Semigroup Forum 59, 167–170 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Repnitskiĭ, V.B., Vernitskiĭ, A.S.: Semigroups of order preserving mappings. Commun. Algebra 28, 3635–3641 (2000) zbMATHCrossRefGoogle Scholar
  15. 15.
    Repnitskiĭ, V.B., Volkov, M.V.: The finite basis problem for the pseudovariety O. Proc. Roy. Soc. Edinb. Sect. A 128, 661–669 (1998) zbMATHGoogle Scholar
  16. 16.
    Vernitskiĭ, A.S., Volkov, M.V.: A proof and generalisation of Higgins’ division theorem for semigroups of order-preserving mappings. Izv. VUZ Mat. (1), 38–44 (1995) (in Russian). English translation in: Russ. Math. Izv. VUZ 39 (1), 34–39 (1995) Google Scholar
  17. 17.
    Volkov, M.V.: Decidability of finite quasivarieties generated by certain transformation semigroups. Algebra Universalis 46, 97–103 (2001) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de Matemática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.CAULLisboaPortugal
  3. 3.Department of Mathematics and MechanicsUral State UniversityEkaterinburgRussia

Personalised recommendations