Semigroup Forum

, Volume 81, Issue 3, pp 551–554 | Cite as

On divisors of semigroups of order-preserving mappings of a finite chain

  • V. H. FernandesEmail author
  • M. V. Volkov
Short Note


We show that if a semigroup T divides a semigroup of full order preserving transformations of a finite chain, then so does any semidirect product ST where S is a finite semilattice whose natural order makes S a chain.


Semigroup of order preserving transformations Divisor Semidirect product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida, J., Higgins, P.M.: Monoids respecting n-chains of intervals. J. Algebra 187, 183–202 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Almeida, J., Higgins, P.M., Volkov, M.V.: The gap between partial and full: an addendum. Int. J. Algebra Comput. 11, 131–135 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Almeida, J., Volkov, M.V.: The gap between partial and full. Int. J. Algebra Comput. 8, 399–430 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aĭzenštat, A.Ya.: The defining relations of the endomorphism semigroup of a finite linearly ordered set. Sib. Mat. 3, 161–169 (1962) (in Russian) Google Scholar
  5. 5.
    Aĭzenštat, A.Ya.: Homomorphisms of semigroups of endomorphisms of ordered sets. Uch. Zap. Leningr. Gos. Pedagog. Inst. 238, 38–48 (1962) (in Russian) Google Scholar
  6. 6.
    Fernandes, V.H.: Semigroups of order-preserving mappings on a finite chain: a new class of divisors. Semigroup Forum 54, 230–236 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fernandes, V.H.: A new class of divisors of semigroups of isotone mappings of finite chains. Izv. VUZ Mat. (3), 51–59 (2002) (in Russian). English translation in: Russ. Math. Izv. VUZ 46 (3), 47–55 (2002) Google Scholar
  8. 8.
    Fernandes, V.H., Jesus, M.M., Maltcev, V., Mitchell, J.D.: Endomorphisms of the semigroup of order-preserving mappings. Semigroup Forum (2010). doi: 10.1007/s00233-010-9220-7
  9. 9.
    Fremlin, D.H., Higgins, P.M.: Deciding some embeddability problems for semigroups of mappings. In: M.P. Smith, et al. (eds.) Semigroups, pp. 87–95. World Scientific, Singapore (2000) Google Scholar
  10. 10.
    Gomes, G.M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 45, 272–282 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Higgins, P.M.: Divisors of semigroups of order-preserving mappings on a finite chain. Int. J. Algebra Comput. 5, 725–742 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Howie, J.M.: Product of idempotents in certain semigroups of transformations. Proc. Edinb. Math. Soc. 17, 223–236 (1971) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lavers, T., Solomon, A.: The endomorphisms of a finite chain form a Rees congruence semigroup. Semigroup Forum 59, 167–170 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Repnitskiĭ, V.B., Vernitskiĭ, A.S.: Semigroups of order preserving mappings. Commun. Algebra 28, 3635–3641 (2000) zbMATHCrossRefGoogle Scholar
  15. 15.
    Repnitskiĭ, V.B., Volkov, M.V.: The finite basis problem for the pseudovariety O. Proc. Roy. Soc. Edinb. Sect. A 128, 661–669 (1998) zbMATHGoogle Scholar
  16. 16.
    Vernitskiĭ, A.S., Volkov, M.V.: A proof and generalisation of Higgins’ division theorem for semigroups of order-preserving mappings. Izv. VUZ Mat. (1), 38–44 (1995) (in Russian). English translation in: Russ. Math. Izv. VUZ 39 (1), 34–39 (1995) Google Scholar
  17. 17.
    Volkov, M.V.: Decidability of finite quasivarieties generated by certain transformation semigroups. Algebra Universalis 46, 97–103 (2001) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de Matemática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.CAULLisboaPortugal
  3. 3.Department of Mathematics and MechanicsUral State UniversityEkaterinburgRussia

Personalised recommendations