Semigroup Forum

, Volume 80, Issue 2, pp 325–340 | Cite as

An abstract characterization of Thompson’s group F

Research Article


We show that Thompson’s group F is the symmetry group of the ‘generic idempotent’. That is, take the monoidal category freely generated by an object A and an isomorphism AAA; then F is the group of automorphisms of A.


Thompson groups Monoidal category Idempotent Operad Groupoid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bénabou, J.: Introduction to bicategories. In: Bénabou, J., et al. (ed.) Reports of the Midwest Category Seminar. Lecture Notes in Mathematics, vol. 47. Springer, Berlin (1967) CrossRefGoogle Scholar
  2. 2.
    Belk, J.: Thompson’s Group F. Ph.D. Thesis, Cornell University (2004) Google Scholar
  3. 3.
    Brin, M.: The algebra of strand splitting I. A braided version of Thompson’s group V. J. Group Theory 10, 757–788 (2007). arXiv:math.GR/0406042 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brin, M.: Coherence of associativity in categories with multiplication. J. Pure Appl. Algebra 198, 57–65 (2005). arXiv:math.CT/0501086 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brown, K.S.: Finiteness properties of groups. J. Pure Appl. Algebra 44, 45–75 (1987) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. 42, 215–256 (1996) MATHMathSciNetGoogle Scholar
  7. 7.
    Dehornoy, P.: The structure group for the associativity identity. J. Pure Appl. Algebra 111, 59–82 (1996) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dehornoy, P.: Geometric presentations for Thompson’s groups. J. Pure Appl. Algebra 203, 1–44 (2005). arXiv:math.GR/0407096 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dijkgraaf, R.: A geometrical approach to two dimensional conformal field theory. Ph.D. Thesis, University of Utrecht (1989) Google Scholar
  10. 10.
    Fiore, M., Leinster, T.: A simple description of Thompson’s group F (2005). arXiv:math.GR/0508617
  11. 11.
    Freyd, P., Heller, A.: Splitting homotopy idempotents II. J. Pure Appl. Algebra 89, 93–106 (1993) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guba, V., Sapir, M.: Diagram groups. Mem. AMS 130(620), 1–117 (1997) MathSciNetGoogle Scholar
  13. 13.
    Higman, G.: Finitely Presented Infinite Simple Groups. Notes on Pure Mathematics, vol. 8. The Australian National University, Canberra (1974) Google Scholar
  14. 14.
    Jónsson, B., Tarski, A.: On two properties of free algebras. Math. Scand. 9, 95–101 (1961) MATHMathSciNetGoogle Scholar
  15. 15.
    Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2003) Google Scholar
  17. 17.
    Lambek, J.: Deductive systems and categories II: standard constructions and closed categories. In: Hilton, P. (ed.) Category Theory, Homology Theory and Their Applications, I. Lecture Notes in Mathematics, vol. 86. Springer, Berlin (1969) CrossRefGoogle Scholar
  18. 18.
    Lawson, M.: A correspondence between balanced varieties and inverse monoids. Int. J. Algebra Comput. 16, 887–924 (2006) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lawson, M.: A class of subgroups of Thompson’s group V. Semigroup Forum 75, 241–252 (2007) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lawvere, F.W.: Ordinal sums and equational doctrines. In: Seminar on Triples and Categorical Homology Theory, ETH, Zürich, 1966/67. Lecture Notes in Mathematics, vol. 80. Springer, Berlin (1969) CrossRefGoogle Scholar
  21. 21.
    Leinster, T.: Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2004). arXiv:math.CT/0305049 MATHGoogle Scholar
  22. 22.
    Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, Berlin (1998), revised edition MATHGoogle Scholar
  23. 23.
    Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. AMS, Providence (2002) MATHGoogle Scholar
  24. 24.
    May, J.P.: The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, vol. 271. Springer, Berlin (1972) MATHGoogle Scholar
  25. 25.
    McKenzie, R., Thompson, R.: An elementary construction of unsolvable word problems in group theory. In: Boone, W.W., Cannonito, F.B., Lyndon, R.C. (eds.) Word Problems. Studies in Logic and the Foundation of Mathematics, vol. 71. North-Holland, Amsterdam (1973) Google Scholar
  26. 26.
    Paré, R.: Simply connected limits. Can. J. Math. 42, 731–746 (1990) MATHGoogle Scholar
  27. 27.
    Paré, R.: Universal covering categories. Rend. Ist. Mat. Univ. Trieste 25, 391–411 (1993) MATHGoogle Scholar
  28. 28.
    Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Etud. Sci. Publ. Math. 34, 105–112 (1968) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.Department of MathematicsUniversity of GlasgowGlasgowUK

Personalised recommendations