Semigroup Forum

, Volume 80, Issue 1, pp 121–142

On fractional resolvent operator functions

Article

Abstract

In this paper we introduce three kinds of resolvent families defined by purely algebraic equations, which extend the classical semigroup property and Cosine functional equation. We give their basic properties and analyticity criteria. Moreover, the relations between integrated resolvent families and resolvent families are discussed as well.

Keywords

α-times resolvent families (α,β)-resolvent operator functions Generators Analyticity criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araya, D., Lizama, C.: Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. Ser. A, Theory Methods Appl. 69, 3692–3705 (2008) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96, Birkhäuser, Basel (2001) MATHGoogle Scholar
  3. 3.
    Bajlekova, E.: Fractional evolution equations in Banach spaces. PhD Thesis, Eindhoven University of Technology (2001) Google Scholar
  4. 4.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. J. R. Astron. Soc. 13, 529–539 (1967) Google Scholar
  5. 5.
    Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento 1, 161–198 (1971) CrossRefGoogle Scholar
  6. 6.
    Cuesta, E.: Asymptotic behavior of the solutions of fractional integro-differential equations and some time discretizations. Discrete Contin. Dyn. Syst. (Suppl.) 277–285 (2007) Google Scholar
  7. 7.
    Da Prato, G., Iannelli, M.: Linear integrodifferential equations in Banach space. Rend. Sem. Mat. Univ. Padova 62, 207–219 (1980) MATHMathSciNetGoogle Scholar
  8. 8.
    deLaubenfels, R.: Existence Families, Functional Calculi and Evolution Equations. Lecture Notes in Mathematics, vol. 1570, Springer, Berlin (1994) MATHGoogle Scholar
  9. 9.
    Kostić, M.: On analytic integrated semigroups. Novi Sad J. Math. 35(1), 127–135 (2005) MathSciNetGoogle Scholar
  10. 10.
    Lizama, C.: Regularized solutions for abstract Volterra equations. J. Math. Anal. Appl. 243, 278–292 (2000) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lizama, C.: On approximation and representation of k-regularized resolvent families. Integral Equ. Oper. Theory 41, 223–229 (2001) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lizama, C., Prado, H.: Rates of approximation and ergodic limits of regularized operator families. J. Approx. Theory 122, 42–61 (2003) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lizama, C., Sánchez, J.: On perturbation of k-regularized resolvent families. Taiwan. J. Math. 7, 217–227 (2003) MATHGoogle Scholar
  14. 14.
    Li, M., Zheng, Q.: On spectral inclusions and approximations of α-times resolvent families. Semigroup Forum 69, 356–368 (2004) MATHMathSciNetGoogle Scholar
  15. 15.
    Li, M., Zheng, Q., Zhang, J.Z.: Regularized resolvent families. Taiwan. J. Math. 11, 117–133 (2007) MATHMathSciNetGoogle Scholar
  16. 16.
    Oka, H.: Linear Volterra equations and integrated solution families. Semigroup Forum 53, 278–297 (1996) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983) MATHGoogle Scholar
  18. 18.
    Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993) MATHGoogle Scholar
  19. 19.
    Shaw, S.Y., Chen, J.C.: Asymptotic behavior of (a,k)-regularized resolvent families at zero. Taiwan. J. Math. 10, 531–542 (2006) MATHMathSciNetGoogle Scholar
  20. 20.
    Tanabe, H.: Equations of Evolution. Pitman, London (1979) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsSichuan UniversityChengduChina

Personalised recommendations