Semigroup Forum

, Volume 79, Issue 3, pp 561–574 | Cite as

Towards a better understanding of the semigroup tree

Research Article

Abstract

In this paper we elaborate on the structure of the semigroup tree and the regularities on the number of descendants of each node observed earlier by the first author. These regularities admit two different types of behavior and in this work we investigate which of the two types takes place for some well-known classes of semigroups. Also we study the question of what kind of chains appear in the tree and characterize the properties (like being (in)finite) thereof. We conclude with some thoughts that show how this study of the semigroup tree may help in solving the conjecture of Fibonacci-like behavior of the number of semigroups with given genus.

Keywords

Numerical semigroup Fibonacci numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946) MATHMathSciNetGoogle Scholar
  2. 2.
    Barucci, V., Dobbs, D.E., Fontana, M.: Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem. Am. Math. Soc. 125(598), 78 (1997) MathSciNetGoogle Scholar
  3. 3.
    Blanco, V., Puerto, J.: Computing the number of numerical semigroups using generating functions. arXiv:0901.1228v1
  4. 4.
    Bras-Amorós, M.: Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum 76(2), 379–384 (2008) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bras-Amorós, M.: Bounds on the number of numerical semigroups of a given genus. J. Pure Appl. Algebra 213(6), 997–1001 (2009) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Campillo, A., Farrán, J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6(1), 71–92 (2000) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Campillo, A., Farrán, J.I., Munuera, C.: On the parameters of algebraic-geometry codes related to Arf semigroups. IEEE Trans. Inf. Theory 46(7), 2634–2638 (2000) MATHCrossRefGoogle Scholar
  8. 8.
    Elizalde, S.: Improved bounds on the number of numerical semigroups of a given genus. arXiv:0905.0489v1
  9. 9.
    Høholdt, T., van Lint, J.H., Pellikaan, R.: Algebraic geometry codes. In: Pless, V.S., Huffman, W.C., Brualdi, R.A. (eds.) Handbook of Coding Theory, vol. I, pp. 871–961. Elsevier, Amsterdam (1998) Google Scholar
  10. 10.
    Kirfel, C., Pellikaan, R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inf. Theory 41(6), 1720–1732 (1995). Special issue on algebraic geometry codes, part 1 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Komeda, J.: Non-Weierstrass numerical semigroups. Semigroup Forum 57(2), 157–185 (1998) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rosales, J.C.: Families of numerical semigroups closed under finite intersections and for the Frobenius number. Houst. J. Math. (2008) Google Scholar
  13. 13.
    Rosales, J.C., Branco, M.B.: Irreducible numerical semigroups. Pac. J. Math. 209(1), 131–143 (2003) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigrops. Springer (2009, to appear) Google Scholar
  15. 15.
    Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Branco, M.B.: Arf numerical semigroups. J. Algebra 276(1), 3–12 (2004) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Branco, M.B.: Saturated numerical semigroups. Houst. J. Math. 30(2), 321–330 (2004) (electronic) MATHGoogle Scholar
  17. 17.
    Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Madrid, J.A.J.: The oversemigroups of a numerical semigroup. Semigroup Forum 67(1), 145–158 (2003) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Madrid, J.A.J.: Fundamental gaps in numerical semigroups. J. Pure Appl. Algebra 189(1–3), 301–313 (2004) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Department of Secure DataCenter for Advanced Security Research DarmstadtDarmstadtGermany

Personalised recommendations