Semigroup Forum

, Volume 78, Issue 2, pp 253–261 | Cite as

Minimal varieties and quasivarieties of semilattices with one automorphism

Research Article

Abstract

We describe all minimal quasivarieties and all minimal varieties of semilattices with one automorphism (considered as algebras with one binary and two unary operations).

Keywords

Semilattice Automorphism Variety Quasivariety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M.E., Adaricheva, K.A., Dziobiak, W., Kravchenko, A.V.: Open questions related to the problem of Birkhoff and Maltsev. Stud. Log. 78, 357–378 (2004) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Siberian School of Algebra and Logic. Consultants Bureau, New York (1998) Google Scholar
  3. 3.
    Ježek, J.: On atoms in lattices of primitive classes. Comment. Math. Univ. Carol. 11, 515–532 (1970) MATHGoogle Scholar
  4. 4.
    Ježek, J.: Subdirectly irreducible semilattices with an automorphism. Semigroup Forum 43, 178–186 (1991) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kalicki, J.: The number of equationally complete classes of equations. Indag. Math. 17, 660–662 (1955) MathSciNetGoogle Scholar
  6. 6.
    Kalicki, J., Scott, D.: Equational completeness of abstract algebras. Indag. Math. 17, 650–659 (1955) MathSciNetGoogle Scholar
  7. 7.
    Kearnes, K., Szendrei, A.: A characterization of minimal locally finite varieties. Trans. Am. Math. Soc. 349, 1749–1768 (1997) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mal’cev, A.I.: Algebraic Systems. Nauka, Moscow (1970) (in Russian) MATHGoogle Scholar
  9. 9.
    McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices, Varieties, vol. I. Wadsworth & Brooks/Cole, Monterey (1987) MATHGoogle Scholar
  10. 10.
    Szendrei, A.: A survey on strictly simple algebras and minimal varieties. In: Universal Algebra and Quasigroup Theory, Jadwisin, 1989. Res. Exp. Math., vol. 19, pp. 209–239. Heldermann, Berlin (1992) Google Scholar
  11. 11.
    Shafaat, A.: On implicational completeness. J. Can. Math. Soc. 26, 761–768 (1974) MATHGoogle Scholar
  12. 12.
    Shafaat, A.: The number of proper minimal quasivarieties of groupoids. Proc. Am. Math. Soc. 49, 54–58 (1975) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Puerto RicoMayagüezUSA
  2. 2.MFF UKPrague 8Czech Republic
  3. 3.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations