Semigroup Forum

, 76:579 | Cite as

The idempotent-separating degree of a block-group

  • Vítor H. FernandesEmail author
Short note


In this note we characterize the least positive integer n such that there exists an idempotent-separating homomorphism from a finite block-group S into the monoid of all partial transformations of a set with n elements. In particular, as for a fundamental semigroup S this number coincides with the smallest size of a set for which S can be faithfully represented by partial transformations, we obtain a generalization of Easdown’s result established for fundamental finite inverse semigroups.


Block-groups Representations Transformations 


  1. 1.
    Arbib, M.: Algebraic Theory of Machines, Languages and Semigroups. Academic Press, San Diego (1968) zbMATHGoogle Scholar
  2. 2.
    Easdown, D.: The minimal faithful degree of a fundamental inverse semigroup. Bull. Aust. Math. Soc. 35, 373–378 (1987) zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Edwards, P.M.: Fundamental semigroups. Proc. R. Soc. Edinb. 99A, 313–317 (1985) Google Scholar
  4. 4.
    Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press, London (1995) zbMATHGoogle Scholar
  5. 5.
    Lallement, G., Petrich, M.: Structure d’une classe de demi-groupes réguliers. J. Math. Pures Appl. IX. Ser. 48, 345–397 (1969) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Lee, E.W.H., Volkov, M.V.: On the structure of the lattice of combinatorial Rees-Sushkevich varieties. In: André, J., et al. (eds.) Semigroups and Formal Languages, pp. 164–187. World Scientific, Singapore (2007) Google Scholar
  7. 7.
    Munn, W.D.: Uniform semilattices and bisimple inverse semigroups. Q. J. Math. Oxf. (2) 17, 151–159 (1966) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pin, J.-E.: \(\mathsf{BG}=\mathsf{PG}\) : a success story. In: Fountain, J. (ed.) Semigroups, Formal Languages and Groups, pp. 33–47. Kluwer Academic, Dordrecht (1995) Google Scholar
  9. 9.
    Reilly, N.R.: Bisimple ω-semigroups. Proc. Glasgow Math. Assoc. 7, 160–167 (1966) zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Rhodes, J.: Some results on finite semigroups. J. Algebra 4, 471–504 (1966) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Steinfeld, O.: On semigroups which are unions of completely 0-simple subsemigroups. Czech. Math. J. 16, 63–69 (1966) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de Matemática, F.C.T.Universidade Nova de LisboaMonte da CaparicaPortugal
  2. 2.Centro de ÁlgebraUniversidade de LisboaLisboaPortugal

Personalised recommendations