Semigroup Forum

, Volume 76, Issue 2, pp 256–267 | Cite as

Absolute graphs with prescribed endomorphism monoid

  • Manfred Droste
  • Rüdiger Göbel
  • Sebastian Pokutta
Research article


We consider endomorphism monoids of graphs. It is well-known that any monoid can be represented as the endomorphism monoid M of some graph Γ with countably many colors. We give a new proof of this theorem such that the isomorphism between the endomorphism monoid \(\mathop{\rm End}\nolimits (\Gamma)\) and M is absolute, i.e. \(\mathop{\rm End}\nolimits (\Gamma)\cong M\) holds in any generic extension of the given universe of set theory. This is true if and only if |M|,|Γ| are smaller than the first Erdős cardinal (which is known to be strongly inaccessible). We will encode Shelah’s absolutely rigid family of trees (Isr. J. Math. 42(3), 177–226, 1982) into Γ. The main result will be used to construct fields with prescribed absolute endomorphism monoids, see Göbel and Pokutta (Shelah’s absolutely rigid trees and absolutely rigid fields, in preparation).


Absolute endomorphism monoids Action of semigroups on sets Colored graphs Absoluteness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behrendt, G.: Automorphism groups of posets containing no crowns. Ars Comb. 29A, 233–239 (1990) MathSciNetGoogle Scholar
  2. 2.
    Burgess, J.P.: Forcing. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 404–552. North-Holland, Amsterdam (1977) Google Scholar
  3. 3.
    Eklof, P.C., Mekler, A.H.: Almost Free Modules—Set-Theoretic Methods, rev. edn. North-Holland Mathematical Library (2002) Google Scholar
  4. 4.
    Eklof, P.C., Shelah, S.: Absolutely rigid systems and absolutely indecomposable groups. In: Abelian Groups and Modules. Trends in Math., pp. 257–268. Birkhäuser, Basel (1999) Google Scholar
  5. 5.
    Fuchs, L.: Infinite Abelian Groups, vols. 1, 2. Academic, New York (1970) (1973) Google Scholar
  6. 6.
    Fried, E., Kollár, J.: Automorphism groups of fields. Col. Mat. Soc. János Bolyai 29, 293–303 (1977) Google Scholar
  7. 7.
    Fuchs, L., Göbel, R.: Modules with absolute endomorphism rings, Isr. J. Math. (submitted) Google Scholar
  8. 8.
    Göbel, R., Pokutta, S.: Shelah’s absolutely rigid trees and absolutely rigid fields (in preparation) Google Scholar
  9. 9.
    Göbel, R., Shelah, S.: On absolutely indecomposable modules. Proc. Am. Math. Soc. 135(6), 1641–1649 (2007) zbMATHCrossRefGoogle Scholar
  10. 10.
    Göbel, R., Trlifaj, J.: Approximation Theory and Endomorphism Algebras. Expositions in Mathematics, vol. 41. Walter de Gruyter, Berlin (2006) Google Scholar
  11. 11.
    Jech, T.: Set Theory. Springer, Berlin (2000) Google Scholar
  12. 12.
    Lévi, A.: A hierarchy of formulas in set theory, Mem. Am. Math. Soc. 57 (1965) Google Scholar
  13. 13.
    Pröhle, P.: Does the Frobenius endomorphism always generate a direct summand in the endomorphism monoid of prime characteristic? Bull. Aust. Math. Soc. 30, 335–356 (1984) zbMATHCrossRefGoogle Scholar
  14. 14.
    Pultr, A., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland Mathematical Library, vol. 22. North-Holland, Amsterdam (1980) zbMATHGoogle Scholar
  15. 15.
    Shelah, S.: Better quasi-orders for uncountable cardinals. Isr. J. Math. 42(3), 177–226 (1982) zbMATHCrossRefGoogle Scholar
  16. 16.
    Shelah, S.: Personal communication (2006) Google Scholar
  17. 17.
    Silver, J.: A large cardinal in the constructible universe. Fund. Math. 69, 93–100 (1970) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Manfred Droste
    • 1
  • Rüdiger Göbel
    • 2
  • Sebastian Pokutta
    • 3
  1. 1.Institute of Computer ScienceUniversity of LeipzigLeipzigGermany
  2. 2.Department of MathematicsUniversity of Duisburg-EssenEssenGermany
  3. 3.Operations Research CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations