Skip to main content
Log in

K+-Sensitive Gating of the K+ Outward Rectifier in Vicia Guard Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract.

The effect of extracellular cation concentration and membrane voltage on the current carried by outward-rectifying K+ channels was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with double-barrelled microelectrodes and the K+ current was monitored under voltage clamp in 0.1–30 mm K+ and in equivalent concentrations of Rb+, Cs+ and Na+. From a conditioning voltage of −200 mV, clamp steps to voltages between −150 and +50 mV in 0.1 mm K+ activated current through outward-rectifying K+ channels (I K, out) at the plasma membrane in a voltage-dependent fashion. Increasing [K+] o shifted the voltage-sensitivity of I K, out in parallel with the equilibrium potential for K+ across the membrane. A similar effect of [K+] o was evident in the kinetics of I K, out activation and deactivation, as well as the steady-state conductance- (g K ) voltage relations. Linear conductances, determined as a function of the conditioning voltage from instantaneous I-V curves, yielded voltages for half-maximal conductance near −130 mV in 0.1 mm K+, −80 mV in 1.0 mm K+, and −20 mV in 10 mm K+. Similar data were obtained with Rb+ and Cs+, but not with Na+, consistent with the relative efficacy of cation binding under equilibrium conditions (K+≥ Rb+ > Cs+ > > Na+). Changing Ca2+ or Mg2+ concentrations outside between 0.1 and 10 mm was without effect on the voltage-dependence of g K or on I K, out activation kinetics, although 10 mm [Ca2+] o accelerated current deactivation at voltages negative of −75 mV. At any one voltage, increasing [K+] o suppressed g K completely, an action that showed significant cooperativity with a Hill coefficient of 2. The apparent affinity for K+ was sensitive to voltage, varying from 0.5 to 20 mm with clamp voltages near −100 to 0 mV, respectively. These, and additional data indicate that extracellular K+ acts as a ligand and alters the voltage-dependence of I K, out gating; the results implicate K+-binding sites accessible from the external surface of the membrane, deep within the electrical field, but distinct from the channel pore; and they are consistent with a serial 4-state reaction-kinetic model for channel gating in which binding of two K+ ions outside affects the distribution between closed states of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Additional information

Received: 27 November 1996/Revised: 4 March 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatt, M., Gradmann, D. K+-Sensitive Gating of the K+ Outward Rectifier in Vicia Guard Cells . J. Membrane Biol. 158 , 241 –256 (1997). https://doi.org/10.1007/s002329900261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002329900261

Navigation