The Journal of Membrane Biology

, Volume 157, Issue 1, pp 27–37 | Cite as

Transmembrane insertion of the Colicin Ia hydrophobic hairpin

  • P. K. Kienker
  • X. -Q. Qiu
  • S. L. Slatin
  • A. Finkelstein
  • K. S. Jakes
Articles

Abstract

Colicin Ia is a bactericidal protein that forms voltage-dependent, ion-conducting channels, both in the inner membrane of target bacteria and in planar bilayer membranes. Its amino acid sequence is rich in charged residues, except for a hydrophobic segment of 40 residues near the carboxyl terminus. In the crystal structure of colicin Ia and related colicins, this segment forms an α-helical hairpin. The hydrophobic segment is thought to be involved in the initial association of the colicin with the membrane and in the formation of the channel, but various orientations of the hairpin with respect to the membrane have been proposed. To address this issue, we attached biotin to a residue at the tip of the hydrophobic hairpin, and then probed its location with the biotin-binding protein streptavidin, added to one side or the other of a planar bilayer. Streptavidin added to the same side as the colicin prevented channel opening. Prior addition of streptavidin to the opposite side protected channels from this effect, and also increased the rate of channel opening; it produced these effects even before the first opening of the channels. These results suggest a model of membrane association in which the colicin first binds with the hydrophobic hairpin parallel to the membrane; next the hairpin inserts in a transmembrane orientation; and finally the channel opens. We also used streptavidin binding to obtain a stable population of colicin molecules in the membrane, suitable for the quantitative study of voltage-dependent gating. The effective gating charge thus determined is pH-independent and relatively small, compared with previous results for wildtype colicin Ia.

Key words

Streptavidin Biotin Channel Voltage dependence Bilayer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleveland, M.vB., Slatin, S., Finkelstein, A., Levinthal, C. 1983. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin El. Proc. Natl. Acad. Sci. USA 80:3706–3710PubMedCrossRefGoogle Scholar
  2. 2.
    Cramer, W.A., Heymann, J.B., Schendel, S.L., Deriy, B.N., Cohen, F.S., Elkins, P.A., Stauffacher, C.V. 1995. Structure-function of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct. 24:611–641PubMedCrossRefGoogle Scholar
  3. 3.
    Duché, D., Izard, J., González-Mañas, J.M., Parker M.W., Crest, M., Chartier, M., Baty, D. 1996. Membrane topology of the colicin A pore-forming domain analyzed by disulfide bond engineering. J. Biol. Chem. 271:15401–15406PubMedCrossRefGoogle Scholar
  4. 4.
    Duché, D., Parker, M.W., González-Mañas, J.-M., Pattus, F., Baty, D. 1994. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. J. Biol. Chem. 269:6332–6339PubMedGoogle Scholar
  5. 5.
    Jakes, K.S., Abrams, C.K., Finkelstein, A., Slatin, S.L. 1990. Alteration of the pH-dependent ion selectivity of the colicin El channel by site-directed mutagenesis. J. Biol. Chem. 265:6984–6991PubMedGoogle Scholar
  6. 6.
    Jeanteur, D., Pattus, F., Timmins, P.A. 1994. Membrane-bound form of the pore-forming domain of colicin A. A neutron scattering study. J. Mol. Biol. 235:898–907PubMedCrossRefGoogle Scholar
  7. 7.
    Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange. J. Biol. Chem. 246:5477–5487Google Scholar
  8. 8.
    Kienker, P., Qiu, X.-Q., Nassi, S., Slatin, S., Finkelstein, A., Jakes, K. 1996. Orientation of the hydrophobic hairpin in the colicin Ia channel. Biophys. J. 70:A140Google Scholar
  9. 9.
    Lakey, J.H., Baty, D., Pattus, F. 1991. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants: the membrane insertion of colicin A. J. Mol. Biol. 218:639–653PubMedCrossRefGoogle Scholar
  10. 10.
    Lakey, J.H., Duché, D., González-Mañas, J.-M., Baty, D., Pattus, F. 1993. Fluorescence energy transfer distance measurements: the hydrophobic helical hairpin of colicin A in the membrane bound state. J. Mol. Biol. 230:1055–1067PubMedCrossRefGoogle Scholar
  11. 11.
    Lakey, J.H., Massotte, D., Heitz, F., Dasseux, J.-L., Faucon, J.-F., Parker, M.W., Pattus, F. 1991. Membrane insertion of the poreforming domain of colicin A. A spectroscopic study. Eur. J. Biochem. 196:599–607PubMedCrossRefGoogle Scholar
  12. 12.
    Mankovich, J.A., Hsu, C.-H., Konisky, J. 1986. DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and Ib. J. Bacterial. 168:228–236Google Scholar
  13. 13.
    Massotte, D., Yamamoto, M., Scianimanico, S., Sorokine, O., van Dorsselaer, A., Nakatani, Y., Ourisson, G., Pattus, F. 1993. Structure of the membrane-bound form of the pore-forming domain of colicin A: a partial proteolysis and mass spectrometry study. Biochemistry 32:13787–13794PubMedCrossRefGoogle Scholar
  14. 14.
    Mel, S.F., Falick, A.M., Burlingame, A.L., Stroud, R.M. 1993. Mapping a membrane-associated conformation of colicin Ia. Biochemistry 32:9473–9479PubMedCrossRefGoogle Scholar
  15. 15.
    Montal, M. 1974. Formation of bimolecular membranes from lipid monolayers. Methods Enzymol. 32:545–554PubMedCrossRefGoogle Scholar
  16. 16.
    Nogueira, R.A., Varanda, W.A. 1988. Gating properties of channels formed by colicin Ia in planar lipid bilayer membranes. J. Membrane Biol. 105:143–153CrossRefGoogle Scholar
  17. 17.
    Palmer, L.R., Merrill, A.R. 1994. Mapping the membrane topology of the closed state of the colicin El channel. J. Biol. Chem. 269:4187–4193PubMedGoogle Scholar
  18. 18.
    Parker, M.W., Pattus, F., Tucker, A.D., Tsernoglou, D. 1989. Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96PubMedCrossRefGoogle Scholar
  19. 19.
    Qiu, X.-Q., Jakes, K.S., Finkelstein, A., Slatin, S.L. 1994. Sitespecific biotinylation of colicin Ia. A probe for protein conformation in the membrane. J. Biol. Chem. 269:7483–7488PubMedGoogle Scholar
  20. 20.
    Qiu, X.-Q., Jakes, K.S., Kienker, P.K., Finkelstein, A., Slatin, S.L. 1996. Major transmembrane movement associated with colicin Ia channel gating. J. Gen. Physiol. 107:313–328PubMedCrossRefGoogle Scholar
  21. 21.
    Shin, Y.K., Levinthal, C., Levinthal, F., Hubbell, W.L. 1993. Colicin El binding to membranes: time-resolved studies of spinlabeled mutants. Science 259:960–963PubMedCrossRefGoogle Scholar
  22. 22.
    Slatin, S.L. Qiu, X.-Q., Jahes, K.S., Finkelstein, A. 1994. Identification of a translocated protein segment in a voltage-dependent channel. Nature 371:158–161PubMedCrossRefGoogle Scholar
  23. 23.
    Song, H.Y., Cohen, F.S., Cramer, W.A. 1991. Membrane topography of ColEl gene products: the hydrophobic anchor of the colicin El channel is a helical hairpin. J. Bacteriol. 173:2927–2934PubMedGoogle Scholar
  24. 24.
    Stauffacher, C., Elkins, P., Cramer, W. 1996. Colicin El and the structural puzzle of the channel-forming toxins. Biophys. J. 70:A121CrossRefGoogle Scholar
  25. 25.
    Wiener, M., Freymann, D., Ghosh, P., Stroud, R.M. 1997. Crystal structure in colicin Ia. Nature 385:461–464PubMedCrossRefGoogle Scholar
  26. 26.
    Xu, S., Cramer, W.A., Peterson, A.A., Hermodson, M., Montecucco, C. 1988. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin El channelforming peptide. Proc. Natl. Acad. Sci. USA 85:7531–7535PubMedCrossRefGoogle Scholar
  27. 27.
    Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T., Nakazawa, A. 1982. Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein. Proc. Natl. Acad. Sci. USA 79:2827–2831PubMedCrossRefGoogle Scholar
  28. 28.
    Zakharov, S.D., Heymann, J.B., Zhang, Y.-L., Cramer, W.A. 1996. Membrane binding of the colicin El channel: activity requires an electrostatic interaction of intermediate magnitude. Biophys. J. 70:2774–2783PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • P. K. Kienker
    • 1
  • X. -Q. Qiu
    • 1
    • 2
  • S. L. Slatin
    • 1
  • A. Finkelstein
    • 1
    • 2
  • K. S. Jakes
    • 1
  1. 1.Department of Physiology & BiophysicsAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of NeuroscienceAlbert Einstein College of MedicineBronxUSA

Personalised recommendations