Advertisement

The Journal of Membrane Biology

, Volume 177, Issue 3, pp 221–230 | Cite as

Cl Channels in Basolateral TAL Membranes XV. Molecular Heterogeneity Between Cortical and Medullary Channels

  • C.J.  Winters
  • L.  Zimniak
  • M.V.  Mikhailova
  • W.B.  Reeves
  • T.E.  Andreoli

Abstract.

We have isolated two new and highly homologous cDNAs, mmClC-Ka from mouse outer medulla and mcClC-Ka from mouse cortex. In both cases, mRNA was obtained from the indicated region and subjected to RT-PCR using primers from the nucleotide sequence of rbClC-Ka, which encodes basolateral Cl channels (termed rbClC-Ka) in rabbit MTAL. The predicted protein products of mmClC-Ka and mcClC-Ka, mmClC-Ka and mcClC-Ka, respectively, were 85% homologous and had predicted molecular weights of 75 kDa. The predicted protein sequences for mmClC-Ka and rbClC-Ka had three cytosolic sites—threonine 185, threonine 187 and serine 270—which were absent in mcClC-Ka. These three moieties represent potential sites for phosphorylation of mmClC-Ka and rbClC-Ka, but not of mcClC-Ka, and may account for the failure of (ATP + PKA) to increase the open time probability P o in basolateral CTAL Cl channels.

We prepared antisense oligonucleotides specific for nonhomologous regions of these two cDNAs, mmAntisense for mmClC-Ka and mcAntisense for mcClC-Ka. Using anti-rbClC-Ka, a polyclonal antibody to rbClC-Ka, we found that, when transfected into cultured mouse MTAL and CTAL cells, mmAntisense suppressed the appearance of the 75 kDa band by 50% in vesicles from MTAL but not CTAL cells, while transfection of MTAL and CTAL cells with mcAntisense suppressed appearance of the 75 kDa band in vesicles from CTAL but not MTAL cells. mmAntisense transfection also prolonged the half-time (T1/2, sec) for 36Cl efflux in cultured MTAL cells from 82.4 ± 6.8 sec (sem) to 187.8 ± 9.5 sec (n= 5; P= 0.0001) while mcAntisense transfection had no such effect. Conversely, in cultured CTAL cells, mcAntisense transfection prolonged the T1/2 for 36Cl efflux from 80.9 ± 6.3 sec to 191.8 ± 6.5 sec (n= 5; P= 0.00005), while mmAntisense had no such effect. We conclude that mmClC-Ka and mcClC-Ka may encode the basolateral Cl channels mediating net Cl absorption in mouse MTAL and CTAL, respectively.

Key words: Thick limbs — Cl− channels — Basolateral membranes — Molecular heterogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 2000

Authors and Affiliations

  • C.J.  Winters
    • 1
  • L.  Zimniak
    • 1
  • M.V.  Mikhailova
    • 1
  • W.B.  Reeves
    • 1
  • T.E.  Andreoli
    • 1
  1. 1.Division of Nephrology, Department of Internal Medicine, University of Arkansas College of Medicine, 4301 West Markham, Slot 640, 308 Shorey Building, and The John L. McClellan Veterans Hospital, Little Rock, AR 72205, USAUS

Personalised recommendations