Effect of Transmembrane Electric Field on GM1 Containing DMPC–Cholesterol Monolayer: A Computational Study

  • Zarrin Shahzadi
  • Chaitali MukhopadhyayEmail author


Transmembrane electric potentials and membrane curvature have always provided pathways to mediate different cellular processes. We present results of molecular dynamics (MD) simulations of lipid monolayer composed of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol (CHOL) under a transverse electric field to monitor the effect of electric field on membrane containing ganglioside monosialo 1 (GM1). Four systems were studied with membrane monolayer in the presence and absence of GM1 with and without applying electric field along the normal of the monolayer. The applied transmembrane electric field was 0.4 mV/Å which corresponds to the action potential of animal cell. Our results indicate that the electric field induces a considerable lateral stress on the monolayer in the presence of GM1, which is evident from the lateral pressure profiles. It was found that due to the application of electric field major perturbation was caused to the system containing GM1, manifested by the bending of the monolayer. We believe this study provides correlation between electric field and spontaneous membrane bending, specially based on the membrane composition. The consequences of these MD simulations provide considerable insights to different biological phenomenon and lipid membrane models.

Graphic Abstract


Gangliosides Action potential External electric field Molecular dynamics Membrane bending 



We acknowledge Dr. Fatemeh Khalili-Aragahi (Department of Physics, University of Illinois, Chicago) since this work had been initiated in her lab. Z.S. thanks the University Grants Commission (UGC), New Delhi, for the Award of a Junior Research Fellowship. This work is partially funded by the Center for Advanced Studies, Department of Chemistry, University of Calcutta. We are also thankful to Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta.


The study has received no funding.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any studies with individual participants.

Supplementary material

232_2019_101_MOESM1_ESM.docx (404 kb)
Graphical representation of change in surface area plotted against time. Order parameter calculated for the DMPC sn-1 chain (black line) and sn-2 chain (red line) for the 2:1 DMPC/CHOL system. Supplementary material 1 (DOCX 404 kb)


  1. Ahmadpoor F, Sharma P (2015) Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7:16555–16570PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GE, Bassereau P (2014) Membrane shape modulates transmembrane protein distribution. Dev Cell 28:212–218PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aksimentiev A, Schulten K (2005) Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3761PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andersen HC (1983) RATTLE: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24–34CrossRefGoogle Scholar
  5. Aussenac F, Laguerre M, Schmitter JM, Dufourc EJ (2003) Detailed structure and dynamics of Bicelle phospholipids using selectively deuterated and perdeuterated labels. 2H NMR and molecular mechanics study. Langmuir 19:10468–10479CrossRefGoogle Scholar
  6. Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13:404–414PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bahri MA, Heyne BJ, Hans P, Seret AE, Mickalad AA, Hoebeke MD (2005) Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol. Biophys Chem 114:53–61PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baoukina S, Monticelli L, Marrink SJ, Tieleman DP (2007) Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23:12617–12623PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baoukina S, Marrink SJ, Tieleman DP (2009) Lateral pressure profiles in lipid monolayers. Faraday Discuss 144:393–409CrossRefGoogle Scholar
  10. Basu I, Mukhopadhyay C (2014) Insights into binding of cholera toxin to GM1 containing membrane. Langmuir 30:15244–15252PubMedCrossRefPubMedCentralGoogle Scholar
  11. Basu I, Mukhopadhyay C (2015) In silico phase separation in the presence of GM1 in ternary and quaternary lipid bilayers. Phys Chem Chem Phys 17:17130–17139PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bennett WFD, MacCallum JL, Tieleman DP (2009) Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. J Am Chem Soc 131:1972–1978PubMedCrossRefPubMedCentralGoogle Scholar
  13. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  15. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bruhn DS, Lomholt MA, Khandelia H (2016) Quantifying the relationship between curvature and electric potential in lipid bilayers. J Phys Chem B 120:4812–4817PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chang-Ileto B, Frere SG, Chan RB, Voronov SV, Roux A, Di Paolo G (2011) Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell 20:206–218PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chatterjee C, Mukhopadhyay C (2002) Melittin–GM1 interaction: a model for a side-by-side complex. Biochem Biophys Res Commun 292:579–585PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chaves EP, Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584:1748–1759CrossRefGoogle Scholar
  20. Cote LJ, Kim F, Huang J (2009) Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049PubMedCrossRefGoogle Scholar
  21. Czub J, Baginski M (2006) Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys J 90:2368–2382PubMedPubMedCentralCrossRefGoogle Scholar
  22. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  23. Dimova R (2014) Recent developments in the field of bending rigidity measurements on membranes. Adv Colloid Interface Sci 208:225–234PubMedCrossRefGoogle Scholar
  24. Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14:138–146PubMedCrossRefGoogle Scholar
  25. Drin G, Morello V, Casella JF, Gounon P, Antonny B (2008) Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320:670–673PubMedCrossRefGoogle Scholar
  26. Duncan SL, Larson RG (2008) Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys J 94:2965–2986PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frey SL, Chi EY, Arratia C, Majewski J, Kjaer K, Lee KYC (2008) Condensing and fluidizing effects of ganglioside GM1 on phospholipid films. Biophys J 94:3047–3064PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fricke N, Dimova R (2016) Article GM1 softens POPC membranes and induces the formation of micron-sized domains. Biophys J 111:1935–1945PubMedPubMedCentralCrossRefGoogle Scholar
  30. Goñi FM, Alonso A (2006) Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758:1902–1921PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gumbart J, Khalili-Araghi F, Sotomayor M, Roux B (2012) Constant electric field simulations of the membrane potential illustrated with simple systems. Biochim Biophys Acta Biomembr 1818:294–302CrossRefGoogle Scholar
  32. Haucke V, Neher E, Sigrist SJ (2011) Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev 12:127–138CrossRefGoogle Scholar
  33. Hirai M, Iwase H, Arai S, Takizawa T, Hayashi K (1998) Interaction of gangliosides with proteins depending on oligosaccharide chain and protein surface modification. Biophys J 74:1380–1387PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643PubMedCrossRefPubMedCentralGoogle Scholar
  35. Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179PubMedPubMedCentralCrossRefGoogle Scholar
  36. Komljenovic I, Marquardt D, Harroun TA, Sternin E (2010) Location of chlorhexidine in DMPC model membranes: a neutron diffraction study. Chem Phys Lipids 163:480–487PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kucerka N, Marquardt D, Harroun TA, Nieh MP, Wassall SR, Jong DH, Schafer LV, Marrink SJ, Katsaras J (2010) Cholesterol in bilayers with PUFA chains: doping with DMPC or POPC results in sterol reorientation and membrane-domain formation. Biochemistry 49:7485–7493PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ledeen RW, Wu G (2002) Ganglioside function in calcium homeostasis and signaling. Neurochem Res 27:637–647PubMedCrossRefGoogle Scholar
  39. Lodish H, Berk A, Matsudaira P, Kaiser CA, Kriger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular cell biology, 5th edn. Freeman, New YorkGoogle Scholar
  40. Manna M, Mukhopadhyay C (2013) Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation. PLoS ONE 8:1–13Google Scholar
  41. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556PubMedCrossRefPubMedCentralGoogle Scholar
  42. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621PubMedPubMedCentralCrossRefGoogle Scholar
  43. McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128:1065–1070PubMedPubMedCentralCrossRefGoogle Scholar
  44. Méléard P, Gerbeaud C, Pott T, Fernandez-Puente L, Bivas I, Mitov MD, Dufourcq J, Bothorel P (1997) Bending elasticities of model membranes: influences of temperature and sterol content. Biophys J 72:2616–2629PubMedPubMedCentralCrossRefGoogle Scholar
  45. Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 106:3654–3658PubMedCrossRefPubMedCentralGoogle Scholar
  46. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962CrossRefGoogle Scholar
  47. Nielsen SO, Lopez CF, Moore PB, Shelley JC, Klein ML (2003) Molecular dynamics investigations of lipid Langmuir monolayers using a coarse-grain model. J Phys Chem B 107:13911–13917CrossRefGoogle Scholar
  48. Noback CR, Strominger NL, Demarest RJ, Ruggiero DA (eds) (2005) The human nervous system: structure and function. Springer, Berlin, p 744Google Scholar
  49. Olsen BN, Schlesinger PH, Baker NA (2009) Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation. J Am Chem Soc 131:4854–4865PubMedPubMedCentralCrossRefGoogle Scholar
  50. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedPubMedCentralCrossRefGoogle Scholar
  51. Rózycki B, Lipowsky R (2015) Spontaneous curvature of bilayer membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption. J Chem Phys 142:054101PubMedCrossRefGoogle Scholar
  52. Safran SA (1994) Statistical thermodynamics of surfaces, interfaces, and membranes. Addison-Wesley, ReadingGoogle Scholar
  53. Schnaar RL, Gerardy-Schahn R, Hildebrandt H (2014) Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 94:461–518PubMedPubMedCentralCrossRefGoogle Scholar
  54. Serro AP, Galante R, Kozica A, Paradiso P, Goncalves da Silva AMPS, Luzyanina KV, Fernandes AC, Saramago B (2014) Effect of tetracaine on DMPC and DMPC + cholesterol biomembrane models: liposomes and monolayers. Colloids Surf B 116:63–71CrossRefGoogle Scholar
  55. Shahzadi Z, Mukhopadhyay C (2017) Interaction between luteinizing hormone-releasing hormone and GM1-doped cholesterol/sphingomyelin vesicles: a spectroscopic study. J Membr Biol 250:617–627PubMedCrossRefPubMedCentralGoogle Scholar
  56. Shahzadi Z, Das S, Bala T, Mukhopadhyay C (2018) Phase behavior of GM1-containing DMPC–cholesterol monolayer: experimental and theoretical study. Langmuir 34:11602–11611PubMedCrossRefPubMedCentralGoogle Scholar
  57. Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25:329–354PubMedCrossRefPubMedCentralGoogle Scholar
  58. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989PubMedCrossRefPubMedCentralGoogle Scholar
  59. Vitkova V, Petrov AG (2013) Lipid bilayers and membranes: material properties. In: Iglic A Genova J (eds) Advances in planar lipid bilayers and liposomes. Academic, New York, pp 89–138CrossRefGoogle Scholar
  60. Wu G, Lu ZH, Xie X, Li B, Ledeen RW (2001a) Mutant NG108-15 cells (NG-CR60) deficient in GM1 synthase respond aberrantly to axonogenic stimuli and are vulnerable to calcium-induced apoptosis: they are rescued with LIGA-20. J Neurochem 76:690–702PubMedCrossRefGoogle Scholar
  61. Wu G, Xie X, Lu Z-H, Ledeen RW (2001b) Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci USA 98:307–312PubMedCrossRefGoogle Scholar
  62. Xavier R, Brennan T, Li Q, McCormack C, Seed B (1998) Membrane compartmentation is required for efficient T cell activation. Immunity 8:723–732PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations