The Journal of Membrane Biology

, Volume 252, Issue 6, pp 609–616 | Cite as

Prevailing Effects of Ibutilide on Fast Delayed Rectifier K+ Channel

  • Sodikdjon A. KodirovEmail author
  • Vladimir L. Zhuravlev
  • Johannes Brachmann


Effects of ibutilide, a class III antiarrhythmic drug, on delayed rectifier potassium currents (IK) in freshly isolated guinea pig ventricular myocytes were studied. Experiments were performed using the whole-cell configuration of patch-clamp technique under blockade of L-type calcium currents (Cav1). Ibutilide at concentrations ranging between 10 nM and 100 µM inhibited IKr in dose-dependent manner with a half maximal effective concentration of 2.03 ± 0.74 µM (n = 5–10). The amplitude of tail currents activated by prepulse to + 20 mV was decreased from 253 ± 52 to 130 ± 25 pA (n = 8, p < 0.01) in the presence of 1 µM ibutilide. The envelope test revealed time-dependent changes in ratio of IK-tailIK during 0.2–2 s pulse durations in the absence of drug. With ibutilide, regardless of pulse duration, a relatively constant ratio was estimated, indicative of predominant involvement of IKr component. The slow IKs persisted to greater extent even at 100 μM ibutilide revealing a distinguishable selectivity toward the IKr component.


Tail current Antiarrhythmic agents HERG 



Atrial fibrillation


Action potential


Action potential duration


Action potential duration at 90% repolarization


Voltage-dependent calcium channel responsible for L-type currents


Early afterdepolarization




Delayed rectifier potassium currents


Delayed rectifier potassium currents upon repolarization


Rapid component of delayed rectifier potassium currents


Slow component of delayed rectifier potassium currents


Left ventricle


Maximum diastolic potential, the counterpart of RMP in pacemaker cells


Duration of PR waves reflects the electrical conductance from atria to ventricle


Timing of QRS complex reflects the depolarization phase of ventricular AP


Interval between the Q and T waves in ECG


Resting membrane potential


Right ventricle


Torsades de Pointes



Technical support of Mrs. Klara Güth and comments and useful discussions by Drs. Armin Just and Johannes Vogel, Heidelberg University are gratefully acknowledged. We thank Mrs. Tania Simon, Heidelberg University and Mrs. Carrie Couper, Harvard University for critically reading the manuscript.


Deutsche Forschungsgemeinschaft and SFB320 ‘Herzfunktion und ihre Regulation’ project.

Compliance with Ethical Standards

Conflict of interest

None of the Authors have potential conflicts of interest.

Ethical Approval

The guidelines for the care and use of laboratory animals were strictly followed, and all procedures were approved by the local committee.


  1. Amos GJ, Abrahamsson C, Duker G, Hondeghem L, Palmer M, Carlsson L (2001) Potassium and calcium current blocking properties of the novel antiarrhythmic agent H 345/52: implications for proarrhythmic potential. Cardiovasc Res 49:351–360PubMedCrossRefGoogle Scholar
  2. Balser JR, Bennett PB, Hondeghem LM, Roden DM (1991) Suppression of time-dependent outward current in guinea pig ventricular myocytes. Actions of quinidine and amiodarone. Circ Res 69:519–529PubMedCrossRefGoogle Scholar
  3. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80PubMedCrossRefGoogle Scholar
  4. Buchanan LV, Kabell G, Turcotte UM, Brunden MN, Gibson JK (1992) Effects of ibutilide on spontaneous and induced ventricular arrhythmias in 24-hour canine myocardial infarction: a comparative study with sotalol and encainide. J Cardiovasc Pharmacol 19:256–263PubMedCrossRefGoogle Scholar
  5. Cimini MG, Brunden MN, Gibson JK (1992) Effects of ibutilide fumarate, a novel antiarrhythmic agent, and its enantiomers on isolated rabbit myocardium. Eur J Pharmacol 222:93–98PubMedCrossRefGoogle Scholar
  6. Cordeiro JM, Panama BK, Goodrow R, Zygmunt AC, White C, Treat JA et al (2013) Developmental changes in expression and biophysics of ion channels in the canine ventricle. J Mol Cell Cardiol 64:79–89PubMedCrossRefGoogle Scholar
  7. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803PubMedCrossRefGoogle Scholar
  8. DeFelice LJ, Goolsby WN, Mazzanti M (1990) Potassium channels and the repolarization of cardiac cells. Ann N Y Acad Sci 588:174–184PubMedCrossRefGoogle Scholar
  9. Donahue JK (2012) Gene therapy for ventricular tachyarrhythmias. Gene Ther 19:600–605PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dutta S, Mincholé A, Quinn TA, Rodriguez B (2017) Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Prog Biophys Mol Biol 129:40–52PubMedCrossRefGoogle Scholar
  11. Ellenbogen KA, Clemo HF, Stambler BS, Wood MA, VanderLugt JT (1996) Efficacy of ibutilide for termination of atrial fibrillation and flutter. Am J Cardiol 78:42–45PubMedCrossRefGoogle Scholar
  12. Follmer CH, Colatsky TJ (1990) Block of delayed rectifier potassium current, I K, by flecainide and E-4031 in cat ventricular myocytes. Circulation 82:289–293PubMedCrossRefGoogle Scholar
  13. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100PubMedCrossRefGoogle Scholar
  14. Hiraoka M, Sawada K, Kawano S (1986) Effects of quinidine on plateau currents of guinea-pig ventricular myocytes. J Mol Cell Cardiol 18:1097–1106PubMedCrossRefGoogle Scholar
  15. Isenberg G, Klockner U (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflugers Arch 395:6–18PubMedCrossRefGoogle Scholar
  16. Jung F, DiMarco JP (1996) Antiarrhythmic drug therapy in the treatment of atrial fibrillation. Cardiol Clin 14:507–520PubMedCrossRefGoogle Scholar
  17. Kodirov SA. 1998. Patch-Clamp-Untersuchungen zur Wirkungsweise von Ibutilide auf Ionenkanäle an Herzmuskelzellen des Meerschweinchens [Ph. D.]. Heidelberg: Ruprecht-Karls-Universität Heidelberg. 98 pGoogle Scholar
  18. Kodirov SA (2015) LQT, HCN and epilepsy model. Epilepsia 56:1855PubMedCrossRefGoogle Scholar
  19. Kodirov SA. 2019. Tale of tail current. Prog Biophys Mol Biol: In PressGoogle Scholar
  20. Kodirov SA, Brunner M, Busconi L, Koren G (2003) Long-term restitution of 4-aminopyridine-sensitive currents in Kv1DN ventricular myocytes using adeno-associated virus-mediated delivery of Kv1.5. FEBS Lett 550:74–78PubMedCrossRefGoogle Scholar
  21. Kodirov SA, Brunner M, Nerbonne JM, Buckett P, Mitchell G, Koren G (2004a) Attenuation of IK, slow1 and IK, slow2 in Kv1/Kv2DN mice prolongs the APD and QT intervals but does not suppress spontaneous or inducible arrhythmias. Am J Physiol Heart Circ Physiol 286:H368–H374PubMedCrossRefGoogle Scholar
  22. Kodirov SA, Zhuravlev VL, Pavlenko VK, Safonova TA, Brachmann J (2004b) K+ channels in cardiomyocytes of the pulmonate snail Helix. J Membr Biol 197:145–154PubMedCrossRefGoogle Scholar
  23. Kodirov SA, Wehrmeister M, Colom LV (2014) Modulation of HCN channels in lateral septum by nicotine. Neuropharmacology 81:274–282PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lee KS (1992) Ibutilide, a new compound with potent class III antiarrhythmic activity, activates a slow inward Na+ current in guinea pig ventricular cells. J Pharmacol Exp Ther 262:99–108PubMedGoogle Scholar
  25. Lee KS, Lee EW (1998) Ionic mechanism of ibutilide in human atrium: evidence for a drug—induced Na+ current through a nifedipine inhibited inward channel. J Pharmacol Exp Ther 286:9–22PubMedGoogle Scholar
  26. McBride C, Smith A, Smith J, Reloj A, Velasco E, Powell J et al (2013) Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor. J Membr Biol 246:355–364PubMedPubMedCentralCrossRefGoogle Scholar
  27. Mitra R, Morad M (1985) A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol 249:H1056–H1060PubMedGoogle Scholar
  28. Nerbonne JM (2016) Molecular basis of functional myocardial potassium channel diversity. Card Electrophysiol Clin 8:257–273PubMedPubMedCentralCrossRefGoogle Scholar
  29. Noble D, Tsien RW (1969) Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol 200:205–231PubMedPubMedCentralCrossRefGoogle Scholar
  30. Noble D, Varghese A, Kohl P, Noble P (1998) Improved guinea-pig ventricular cell model incorporating a diadic space, I Kr and I Ks, and length- and tension-dependent processes. Can J Cardiol 14:123–134PubMedGoogle Scholar
  31. Perry M, de Groot MJ, Helliwell R, Leishman D, Tristani-Firouzi M, Sanguinetti MC et al (2004) Structural determinants of HERG channel block by clofilium and ibutilide. Mol Pharmacol 66:240–249PubMedCrossRefGoogle Scholar
  32. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215PubMedCrossRefGoogle Scholar
  33. Sanguinetti MC, Jurkiewicz NK (1991) Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells. Am J Physiol 260:H393–H399PubMedGoogle Scholar
  34. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the I Kr potassium channel. Cell 81:299–307PubMedCrossRefGoogle Scholar
  35. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL et al (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83PubMedCrossRefGoogle Scholar
  36. Sano T, Sugiyama S, Taki K, Hanaki Y, Shimada Y, Ozawa T (1990) Effects of antiarrhythmic agents classified as class III group on ischaemia-induced myocardial damage in canine hearts. Br J Pharmacol 99:577–581PubMedPubMedCentralCrossRefGoogle Scholar
  37. Sasaki N, Watanabe I, Kogawa R, Sonoda K, Takahashi K, Okumura Y et al (2014) Effects of intravenous amiodarone and ibutilide on action potential duration and atrial conduction kinetics in patients with persistent atrial fibrillation. Int Heart J 55:244–248PubMedCrossRefGoogle Scholar
  38. Sendra-Ferrer M, Gonzalez MD (2019) Ibutilide for the control of refractory ventricular tachycardia and ventricular fibrillation in patients with myocardial ischemia and hemodynamic instability. J Cardiovasc Electrophysiol. CrossRefPubMedGoogle Scholar
  39. Sesti F, Goldstein SA (1998) Single-channel characteristics of wild-type I Ks channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol 112:651–663PubMedPubMedCentralCrossRefGoogle Scholar
  40. Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836PubMedCrossRefGoogle Scholar
  41. Spector PS, Curran ME, Zou A, Keating MT, Sanguinetti MC (1996) Fast inactivation causes rectification of the I Kr channel. J Gen Physiol 107:611–619PubMedCrossRefGoogle Scholar
  42. Stambler BS, Beckman KJ, Kadish AH, Camm JA, Ellenbogen KA, Perry KT et al (1997) Acute hemodynamic effects of intravenous ibutilide in patients with or without reduced left ventricular function. Am J Cardiol 80:458–463PubMedCrossRefGoogle Scholar
  43. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95PubMedCrossRefGoogle Scholar
  44. Verduyn SC, Jungschleger JG, Stengl M, Spätjens RL, Beekman JD, Vos MA (2004) Electrophysiological and proarrhythmic parameters in transmural canine left-ventricular needle biopsies. Pflugers Arch 449:115–122PubMedCrossRefGoogle Scholar
  45. Vos MA, van Opstal JM, Leunissen JDM, Verduyn SC (2001) Electrophysiologic parameters and predisposing factors in the generation of drug-induced Torsade de Pointes arrhythmias. Pharmacol Ther 92:109–122PubMedCrossRefGoogle Scholar
  46. Weidmann S (1950) Die Natur des induktiven Elements in biologischen Membranen. Experientia 6:53–54CrossRefGoogle Scholar
  47. Yang T, Snyders DJ, Roden DM (1995) Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (I Kr) in AT-1 cells. Concentration-, time-, voltage-, and use-dependent effects. Circulation 91:1799–1806PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sodikdjon A. Kodirov
    • 1
    • 2
    • 3
    • 4
    Email author
  • Vladimir L. Zhuravlev
    • 1
    • 2
  • Johannes Brachmann
    • 1
    • 4
  1. 1.Department of CardiologyUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Department of PhysiologySaint Petersburg UniversitySaint PetersburgRussia
  3. 3.Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
  4. 4.Department of CardiologyKlinikum Coburg, Teaching Hospital of the University of WürzburgCoburgGermany

Personalised recommendations