Advertisement

The Journal of Membrane Biology

, Volume 252, Issue 4–5, pp 509–526 | Cite as

Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR–G Protein Complexes and the Role of Hypoxia

  • Anurag S. Sikarwar
  • Anjali Y. Bhagirath
  • Shyamala DakshinamurtiEmail author
Article
Part of the following topical collections:
  1. Membrane and Receptor Dynamics

Abstract

G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR–G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.

Graphic Abstract

Keywords

G protein GPCR Receptor effector scaffolding Post-translational modification Hypoxia 

Notes

References

  1. Adam L, Bouvier M et al (1999) Nitric oxide modulates beta(2)-adrenergic receptor palmitoylation and signaling. J Biol Chem 274(37):26337–26343PubMedGoogle Scholar
  2. Adams JW, Wang J et al (2008) Myocardial expression, signaling, and function of GPR22: a protective role for an orphan G protein-coupled receptor. Am J Physiol Heart Circ Physiol 295(2):H509–H521PubMedGoogle Scholar
  3. Adamson P, Marshall CJ et al (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267(28):20033–20038PubMedGoogle Scholar
  4. Arnelle DR, Stamler JS (1995) NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318(2):279–285PubMedGoogle Scholar
  5. Aronstam RS, Martin DC et al (1995) S-nitrosylation of m2 muscarinic receptor thiols disrupts receptor-G-protein coupling. Ann N Y Acad Sci 757:215–217PubMedGoogle Scholar
  6. Ashraf QM, Zanelli SA et al (2001) Phosphorylation of Bcl-2 and Bax proteins during hypoxia in newborn piglets. Neurochem Res 26(1):1–9PubMedGoogle Scholar
  7. Audoly LP, Rocca B et al (2000) Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation 101(24):2833–2840PubMedGoogle Scholar
  8. Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209(2):331–336PubMedPubMedCentralGoogle Scholar
  9. Benhar M, Forrester MT et al (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10(10):721–732PubMedGoogle Scholar
  10. Bhattacharyya R, Wedegaertner PB (2000) Galpha 13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115-RhoGEF membrane binding. J Biol Chem 275(20):14992–14999PubMedGoogle Scholar
  11. Bizzozero OA, Zheng J (2009) Identification of major S-nitrosylated proteins in murine experimental autoimmune encephalomyelitis. J Neurosci Res 87(13):2881–2889PubMedPubMedCentralGoogle Scholar
  12. Black SD (1992) Development of hydrophobicity parameters for prenylated proteins. Biochem Biophys Res Commun 186(3):1437–1442PubMedGoogle Scholar
  13. Boie Y, Rushmore TH et al (1994) Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 269(16):12173–12178PubMedGoogle Scholar
  14. Boyartchuk VL, Ashby MN et al (1997) Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275(5307):1796–1800PubMedGoogle Scholar
  15. Bunting S, Gryglewski R et al (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins 12(6):897–913PubMedGoogle Scholar
  16. Cammarata PR, Neelam S et al (2015) Inhibition of hypoxia inducible factor-1alpha downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells. Mol Vis 21:1024–1035PubMedPubMedCentralGoogle Scholar
  17. Casey PJ, Fong HK et al (1990) Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 265(4):2383–2390PubMedGoogle Scholar
  18. Catrina SB, Botusan IR et al (2006) Hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha are expressed in kaposi sarcoma and modulated by insulin-like growth factor-I. Clin Cancer Res 12(15):4506–4514PubMedGoogle Scholar
  19. Cavasotto CN, Orry AJ et al (2003) Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors. Proteins 51(3):423–433PubMedGoogle Scholar
  20. Cerychova R, Pavlinkova G (2018) HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne) 9:460Google Scholar
  21. Chakraborty R, Sikarwar AS et al (2017) Characterization of GPCR signaling in hypoxia. In: Shukla AK (ed) Methods in cell biology, vol 142. Academic Press, Cambridge, pp 101–110Google Scholar
  22. Chapleau CE, White RP (1979) Effects of prostacyclin on the canine isolated basilar artery. Prostaglandins 17(4):573–580PubMedGoogle Scholar
  23. Charo IF, Feinman RD et al (1977) Prostaglandin endoperoxides and thromboxane A2 can induce platelet aggregation in the absence of secretion. Nature 269(5623):66–69PubMedGoogle Scholar
  24. Chen CA, Manning DR (2000) Regulation of galpha i palmitoylation by activation of the 5-hydroxytryptamine-1A receptor. J Biol Chem 275(31):23516–23522PubMedGoogle Scholar
  25. Chen SC, Huang B et al (2008a) Acute hypoxia enhances proteins’ S-nitrosylation in endothelial cells. Biochem Biophys Res Commun 377(4):1274–1278PubMedGoogle Scholar
  26. Chen SC, Liu YC et al (2008b) Acute hypoxia to endothelial cells induces activating transcription factor 3 (ATF3) expression that is mediated via nitric oxide. Atherosclerosis 201(2):281–288PubMedGoogle Scholar
  27. Clapp LH, Finney P et al (2002) Differential effects of stable prostacyclin analogs on smooth muscle proliferation and cyclic AMP generation in human pulmonary artery. Am J Respir Cell Mol Biol 26(2):194–201PubMedGoogle Scholar
  28. Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386PubMedGoogle Scholar
  29. Coleman RA, Smith WL et al (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46(2):205–229PubMedGoogle Scholar
  30. Conibear E, Davis NG (2010) Palmitoylation and depalmitoylation dynamics at a glance. J Cell Sci 123(Pt 23):4007–4010PubMedPubMedCentralGoogle Scholar
  31. Crouthamel M, Thiyagarajan MM et al (2008) N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q). Cell Signal 20(10):1900–1910PubMedPubMedCentralGoogle Scholar
  32. Degtyarev MY, Spiegel AM et al (1993a) The G protein alpha s subunit incorporates [3H]palmitic acid and mutation of cysteine-3 prevents this modification. Biochemistry 32(32):8057–8061PubMedGoogle Scholar
  33. Degtyarev MY, Spiegel AM et al (1993b) Increased palmitoylation of the Gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin. J Biol Chem 268(32):23769–23772PubMedGoogle Scholar
  34. Degtyarev MY, Spiegel AM et al (1994) Palmitoylation of a G protein alpha i subunit requires membrane localization not myristoylation. J Biol Chem 269(49):30898–30903PubMedGoogle Scholar
  35. Delivoria-Papadopoulos M (2012) Mechanism of caspase-9 activation during hypoxia in the cerebral cortex of newborn piglets: the role of Src kinase. Neurosci Lett 523(1):19–23PubMedPubMedCentralGoogle Scholar
  36. Diesen DL, Hess DT et al (2008) Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal. Circ Res 103(5):545–553PubMedPubMedCentralGoogle Scholar
  37. Duncan JA, Gilman AG (1998) A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J Biol Chem 273(25):15830–15837PubMedGoogle Scholar
  38. Dunphy JT, Linder ME (1998) Signalling functions of protein palmitoylation. Biochim Biophys Acta 1436(1–2):245–261PubMedGoogle Scholar
  39. Dusting GJ, Moncada S et al (1978) Disappearance of prostacyclin (PGI2) in the circulation of the dog [proceedings]. Br J Pharmacol 62(3):414P–415PPubMedPubMedCentralGoogle Scholar
  40. Evanko DS, Thiyagarajan MM et al (2000) Interaction with Gbetagamma is required for membrane targeting and palmitoylation of Galpha(s) and Galpha(q). J Biol Chem 275(2):1327–1336PubMedGoogle Scholar
  41. Farazi TA, Waksman G et al (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276(43):39501–39504PubMedGoogle Scholar
  42. Farsijani NM, Liu Q et al (2016) Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. J Clin Investig 126(4):1425–1437PubMedGoogle Scholar
  43. Fediuk J, Gutsol A et al (2012) Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho. Am J Physiol Lung Cell Mol Physiol 302(1):L13–L26PubMedGoogle Scholar
  44. Fike CD, Pfister SL et al (2002) Cyclooxygenase contracting factors and altered pulmonary vascular responses in chronically hypoxic newborn pigs. J Appl Physiol 92(1):67–74PubMedGoogle Scholar
  45. Foley JF, Kelley LP et al (2001) Prostaglandin D(2) receptor-mediated desensitization of the alpha isoform of the human thromboxane A(2) receptor. Biochem Pharmacol 62(2):229–239PubMedGoogle Scholar
  46. Galbiati F, Guzzi F et al (1994) N-terminal fatty acylation of the alpha-subunit of the G-protein Gi1: only the myristoylated protein is a substrate for palmitoylation. Biochem J 303(Pt 3):697–700PubMedPubMedCentralGoogle Scholar
  47. Galbiati F, Guzzi F et al (1996) Chemical inhibition of myristoylation of the G-protein Gi1 alpha by 2-hydroxymyristate does not interfere with its palmitoylation or membrane association Evidence that palmitoylation, but not myristoylation, regulates membrane attachment. Biochem J 313(Pt 3):717–720PubMedPubMedCentralGoogle Scholar
  48. Gallego C, Gupta SK et al (1992) Myristoylation of the G alpha i2 polypeptide, a G protein alpha subunit, is required for its signaling and transformation functions. Proc Natl Acad Sci USA 89(20):9695–9699PubMedGoogle Scholar
  49. Gaston B (2006) Summary: systemic effects of inhaled nitric oxide. Proc Am Thorac Soc 3(2):170–172PubMedGoogle Scholar
  50. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90–113PubMedGoogle Scholar
  51. Goddard AD, Watts A (2012) Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol 10:27PubMedPubMedCentralGoogle Scholar
  52. Gow AJ, Farkouh CR et al (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol-Lung Cell Mol Physiol 287(2):L262–L268PubMedGoogle Scholar
  53. Gurdal H, Seasholtz TM et al (1997) Role of G alpha q or G alpha o proteins in alpha 1-adrenoceptor subtype-mediated responses in Fischer 344 rat aorta. Mol Pharmacol 52(6):1064–1070PubMedGoogle Scholar
  54. Gurevich VV, Gurevich EV (2017) Molecular mechanisms of GPCR signaling: a structural perspective. Int J Mol Sci 18(12):E2519PubMedGoogle Scholar
  55. Haase VH (2013) Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 27(1):41–53PubMedPubMedCentralGoogle Scholar
  56. Hallak H, Brass LF et al (1994) Failure to myristoylate the alpha subunit of Gz is correlated with an inhibition of palmitoylation and membrane attachment, but has no affect on phosphorylation by protein kinase C. J Biol Chem 269(6):4571–4576PubMedGoogle Scholar
  57. Hamberg M, Svensson J et al (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72(8):2994–2998PubMedGoogle Scholar
  58. Hammarstrom S, Falardeau P (1977) Resolution of prostaglandin endoperoxide synthase and thromboxane synthase of human platelets. Proc Natl Acad Sci USA 74(9):3691–3695PubMedGoogle Scholar
  59. Hanasaki K, Nakano T et al (1990) Receptor-mediated mitogenic effect of thromboxane A2 in vascular smooth muscle cells. Biochem Pharmacol 40(11):2535–2542PubMedGoogle Scholar
  60. Hancock JF, Paterson H et al (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63(1):133–139PubMedGoogle Scholar
  61. Hand AR, Elder KO et al (2015) Redistribution of Galphas in mouse salivary glands following beta-adrenergic stimulation. Arch Oral Biol 60(5):715–723PubMedPubMedCentralGoogle Scholar
  62. Harrison C, Traynor JR (2003) The [35S]GTPgammaS binding assay: approaches and applications in pharmacology. Life Sci 74(4):489–508PubMedGoogle Scholar
  63. Hayes JS, Lawler OA et al (1999) The prostacyclin receptor is isoprenylated. Isoprenylation is required for efficient receptor-effector coupling. J Biol Chem 274(34):23707–23718PubMedGoogle Scholar
  64. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049PubMedGoogle Scholar
  65. Hendriks-Balk MC, Peters SL et al (2008) Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins. Eur J Pharmacol 585(2–3):278–291PubMedGoogle Scholar
  66. Hermans E (2003) Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 99(1):25–44PubMedGoogle Scholar
  67. Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287(7):4411–4418PubMedGoogle Scholar
  68. Hess DT, Matsumoto A et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166PubMedGoogle Scholar
  69. Higgins JB, Casey PJ (1994) In vitro processing of recombinant G protein gamma subunits. Requirements for assembly of an active beta gamma complex. J Biol Chem 269(12):9067–9073PubMedGoogle Scholar
  70. Higgins JB, Casey PJ (1996) The role of prenylation in G-protein assembly and function. Cell Signal 8(6):433–437PubMedGoogle Scholar
  71. Hill E, van Der Kaay J et al (2001) The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol 152(2):309–323PubMedPubMedCentralGoogle Scholar
  72. Hinton M, Mellow L et al (2006) Hypoxia induces hypersensitivity and hyperreactivity to thromboxane receptor agonist in neonatal pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 290(2):L375–L384PubMedGoogle Scholar
  73. Hinton M, Gutsol A et al (2007) Thromboxane hypersensitivity in hypoxic pulmonary artery myocytes: altered TP receptor localization and kinetics. Am J Physiol Lung Cell Mol Physiol 292(3):L654–L663PubMedGoogle Scholar
  74. Hirata T, Narumiya S (2011) Prostanoid receptors. Chem Rev 111(10):6209–6230PubMedGoogle Scholar
  75. Huang C, Duncan JA et al (1999) Persistent membrane association of activated and depalmitoylated G protein alpha subunits. Proc Natl Acad Sci USA 96(2):412–417PubMedGoogle Scholar
  76. Ignarro LJ, Buga GM et al (1987a) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24):9265–9269PubMedGoogle Scholar
  77. Ignarro LJ, Byrns RE et al (1987b) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61(6):866–879PubMedGoogle Scholar
  78. Jaggupilli A, Dhanaraj P et al (2018) Study of adenylyl cyclase-GalphaS interactions and identification of novel AC ligands. Mol Cell Biochem 446(1–2):63–72PubMedGoogle Scholar
  79. Ji R, Chou C-L et al (2010) EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Mol Pharmacol 77(6):1025–1036PubMedPubMedCentralGoogle Scholar
  80. Jiang M, Bajpayee NS (2009) Molecular mechanisms of go signaling. Neurosignals 17(1):23–41PubMedPubMedCentralGoogle Scholar
  81. Jiang F, Tang YT et al (2013) The role of insulin-like growth factor I and hypoxia inducible factor 1alpha in vascular endothelial growth factor expression in type 2 diabetes. Ann Clin Lab Sci 43(1):37–44PubMedGoogle Scholar
  82. Jones TL, Gutkind JS (1998) Galpha12 requires acylation for its transforming activity. Biochemistry 37(9):3196–3202PubMedGoogle Scholar
  83. Jones TL, Simonds WF et al (1990) Myristoylation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment. Proc Natl Acad Sci USA 87(2):568–572PubMedGoogle Scholar
  84. Jones TL, Degtyarev MY et al (1997) The stoichiometry of G alpha(s) palmitoylation in its basal and activated states. Biochemistry 36(23):7185–7191PubMedGoogle Scholar
  85. Jones RL, Giembycz MA et al (2009) Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol 158(1):104–145PubMedPubMedCentralGoogle Scholar
  86. Juhnn YS, Jones TL et al (1992) Amino- and carboxy-terminal deletion mutants of Gs alpha are localized to the particulate fraction of transfected COS cells. J Cell Biol 119(3):523–530PubMedGoogle Scholar
  87. Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128PubMedGoogle Scholar
  88. Kelley LP, Kinsella BT (2003) The role of N-linked glycosylation in determining the surface expression, G protein interaction and effector coupling of the alpha (alpha) isoform of the human thromboxane A(2) receptor. Biochim Biophys Acta 1621(2):192–203PubMedGoogle Scholar
  89. Kelley-Hickie LP, Kinsella BT (2006) Homologous desensitization of signalling by the beta (beta) isoform of the human thromboxane A2 receptor. Biochim Biophys Acta 1761(9):1114–1131PubMedGoogle Scholar
  90. Kelley-Hickie LP, O’Keeffe MB et al (2007) Homologous desensitization of signalling by the alpha (alpha) isoform of the human thromboxane A2 receptor: a specific role for nitric oxide signalling. Biochim Biophys Acta 1773(6):970–989PubMedPubMedCentralGoogle Scholar
  91. Kelly E, Bailey CP et al (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(Suppl 1):S379–S388PubMedGoogle Scholar
  92. Kelly BT, Graham SC et al (2014) Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345(6195):459–463PubMedPubMedCentralGoogle Scholar
  93. Kerov V, Rubin WW et al (2007) N-terminal fatty acylation of transducin profoundly influences its localization and the kinetics of photoresponse in rods. J Neurosci 27(38):10270–10277PubMedPubMedCentralGoogle Scholar
  94. Kharitonov VG, Sundquist AR et al (1995) Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 270(47):28158–28164PubMedGoogle Scholar
  95. Kimple AJ, Bosch DE et al (2011) Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 63(3):728–749PubMedPubMedCentralGoogle Scholar
  96. Kimura M, Mizukami Y et al (2001) Orphan G protein-coupled receptor, GPR41, induces apoptosis via a p53/Bax pathway during ischemic hypoxia and reoxygenation. J Biol Chem 276(28):26453–26460PubMedGoogle Scholar
  97. Kinsella BT, O’Mahony DJ et al (1997) The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther 281(2):957–964PubMedGoogle Scholar
  98. Kleuss C, Krause E (2003) Galpha(s) is palmitoylated at the N-terminal glycine. EMBO J 22(4):826–832PubMedPubMedCentralGoogle Scholar
  99. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406PubMedGoogle Scholar
  100. Kokkola T, Savinainen JR et al (2005) S-nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner. BMC Cell Biol 6(1):21PubMedPubMedCentralGoogle Scholar
  101. Kuhr FK, Zhang Y et al (2010) Beta-arrestin 2 is required for B1 receptor-dependent post-translational activation of inducible nitric oxide synthase. FASEB J 24(7):2475–2483PubMedPubMedCentralGoogle Scholar
  102. Kumar GK, Klein JB (2004) Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol 96(3):1178–1186PubMedGoogle Scholar
  103. Kurihara T, Westenskow PD et al (2014) Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv Exp Med Biol 801:275–281PubMedGoogle Scholar
  104. Lancaster JR Jr (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 91(17):8137–8141PubMedGoogle Scholar
  105. Lander HM, Sehajpal PK et al (1993) Nitric oxide signaling: a possible role for G proteins. J Immunol 151(12):7182–7187PubMedGoogle Scholar
  106. Lappano R, Rigiracciolo D et al (2016) Recent advances on the role of G protein-coupled receptors in hypoxia-mediated signaling. AAPS J 18(2):305–310PubMedPubMedCentralGoogle Scholar
  107. Larsson AK, Hagfjard A et al (2011) Prostaglandin D(2) induces contractions through activation of TP receptors in peripheral lung tissue from the guinea pig. Eur J Pharmacol 669(1–3):136–142PubMedGoogle Scholar
  108. Lawler OA, Miggin SM et al (2001a) The effects of the statins lovastatin and cerivastatin on signalling by the prostanoid IP-receptor. Br J Pharmacol 132(8):1639–1649PubMedPubMedCentralGoogle Scholar
  109. Lawler OA, Miggin SM et al (2001b) Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to G(s)-, to G(i)-, and to G(q)-coupled effector signaling. J Biol Chem 276(36):33596–33607PubMedGoogle Scholar
  110. Le Cras TD, Xue C et al (1996) Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol 270(1 Pt 1):L164–L170PubMedGoogle Scholar
  111. Leclerc PC, Lanctot PM et al (2006) S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. Br J Pharmacol 148(3):306–313PubMedPubMedCentralGoogle Scholar
  112. Lee CM, Genetos DC et al (2007) Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol 212(1):182–188PubMedPubMedCentralGoogle Scholar
  113. Lee S-J, No YR et al (2013) Regulation of hypoxia-inducible factor 1α (HIF-1α) by lysophosphatidic acid is dependent on interplay between p53 and Krüppel-like factor 5. J Biol Chem 288(35):25244–25253PubMedPubMedCentralGoogle Scholar
  114. Levis MJ, Bourne HR (1992) Activation of the alpha subunit of Gs in intact cells alters its abundance, rate of degradation, and membrane avidity. J Cell Biol 119(5):1297–1307PubMedGoogle Scholar
  115. Lin C, McGough R et al (2004) Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res 22(6):1175–1181PubMedGoogle Scholar
  116. Lin MJ, Fine M et al (2013) Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle. eLife 2:e01295PubMedPubMedCentralGoogle Scholar
  117. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8(1):74–84PubMedGoogle Scholar
  118. Linder ME, Pang IH et al (1991) Lipid modifications of G protein subunits. Myristoylation of Go alpha increases its affinity for beta gamma. J Biol Chem 266(7):4654–4659PubMedGoogle Scholar
  119. Linder ME, Middleton P et al (1993) Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc Natl Acad Sci USA 90(8):3675–3679PubMedGoogle Scholar
  120. Loisel TP, Ansanay H et al (1999) Activation of the beta(2)-adrenergic receptor-Galpha(s) complex leads to rapid depalmitoylation and inhibition of repalmitoylation of both the receptor and Galpha(s). J Biol Chem 274(43):31014–31019PubMedGoogle Scholar
  121. Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115(Pt 3):455–465PubMedGoogle Scholar
  122. Mahomed AS, Oliver E et al (2017) Tipifarnib prevents development of hypoxia-induced pulmonary hypertension. Cardiovasc Res 113(3):276–287PubMedPubMedCentralGoogle Scholar
  123. Mais DE, True TA et al (1992) Characterization by photoaffinity labelling of the human platelet thromboxane A2/prostaglandin H2 receptor: evidence for N-linked glycosylation. Eur J Pharmacol 227(3):267–274PubMedGoogle Scholar
  124. Martin W, Villani GM et al (1985) Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232(3):708–716PubMedGoogle Scholar
  125. Martin DD, Beauchamp E et al (2011) Post-translational myristoylation: fat matters in cellular life and death. Biochimie 93(1):18–31PubMedGoogle Scholar
  126. McCallum JF, Wise A et al (1995) The role of palmitoylation of the guanine nucleotide binding protein G11 alpha in defining interaction with the plasma membrane. Biochem J 310(Pt 3):1021–1027PubMedPubMedCentralGoogle Scholar
  127. Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(Suppl 1):S46–S55PubMedPubMedCentralGoogle Scholar
  128. Miyamoto A, Laufs U et al (1997) Modulation of bradykinin receptor ligand binding affinity and its coupled G-proteins by nitric oxide. J Biol Chem 272(31):19601–19608PubMedGoogle Scholar
  129. Mohorko E, Glockshuber R et al (2011) Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 34(4):869–878PubMedGoogle Scholar
  130. Moncada S (1982) Eighth Gaddum Memorial Lecture. University of London Institute of Education, December 1980. Biological importance of prostacyclin. Br J Pharmacol 76(1):3–31PubMedPubMedCentralGoogle Scholar
  131. Moomaw JF, Casey PJ (1992) Mammalian protein geranylgeranyltransferase. Subunit composition and metal requirements. J Biol Chem 267(24):17438–17443PubMedGoogle Scholar
  132. Moores SL, Schaber MD et al (1991) Sequence dependence of protein isoprenylation. J Biol Chem 266(22):14603–14610PubMedGoogle Scholar
  133. Morales J, Fishburn CS et al (1998) Plasma membrane localization of G alpha z requires two signals. Mol Biol Cell 9(1):1–14PubMedPubMedCentralGoogle Scholar
  134. Mouillac B, Caron M et al (1992) Agonist-modulated palmitoylation of beta 2-adrenergic receptor in Sf9 cells. J Biol Chem 267(30):21733–21737PubMedGoogle Scholar
  135. Mumby SM, Heukeroth RO et al (1990) G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci USA 87(2):728–732PubMedGoogle Scholar
  136. Mumby SM, Kleuss C et al (1994) Receptor regulation of G-protein palmitoylation. Proc Natl Acad Sci USA 91(7):2800–2804PubMedGoogle Scholar
  137. Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274(20):5202–5210PubMedGoogle Scholar
  138. Nahomi RB, Nagaraj RH (2018) The role of HIF-1alpha in the TGF-beta2-mediated epithelial-to-mesenchymal transition of human lens epithelial cells. J Cell Biochem 119(8):6814–6827PubMedPubMedCentralGoogle Scholar
  139. Nakamura T, Wang L et al (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39(2):184–195PubMedPubMedCentralGoogle Scholar
  140. Narumiya S, Sugimoto Y et al (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226PubMedGoogle Scholar
  141. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78(6):915–918PubMedGoogle Scholar
  142. Nilius SM, Hasse A et al (2000) Agonist-induced long-term desensitization of the human prostacyclin receptor. FEBS Lett 484(3):211–216PubMedGoogle Scholar
  143. Nozik-Grayck E, Whalen EJ et al (2006) S-nitrosoglutathione inhibits alpha1-adrenergic receptor-mediated vasoconstriction and ligand binding in pulmonary artery. Am J Physiol Lung Cell Mol Physiol 290(1):L136–L143PubMedGoogle Scholar
  144. Ohno Y, Kihara A et al (2006) Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta 1761(4):474–483PubMedGoogle Scholar
  145. O’Meara SJ, Kinsella BT (2004a) Effect of the statin atorvastatin on intracellular signalling by the prostacyclin receptor in vitro and in vivo. Br J Pharmacol 143(2):292–302PubMedPubMedCentralGoogle Scholar
  146. O’Meara SJ, Kinsella BT (2004b) Investigation of the effect of the farnesyl protein transferase inhibitor R115777 on isoprenylation and intracellular signalling by the prostacyclin receptor. Br J Pharmacol 143(2):318–330PubMedPubMedCentralGoogle Scholar
  147. Palmer LA, Gaston B et al (2000) Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol 58(6):1197–1203PubMedGoogle Scholar
  148. Park JY, Lee SY et al (2016) Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Arch Pharm Res 39(3):293–301PubMedGoogle Scholar
  149. Pavlos NJ, Friedman PA (2017) GPCR signaling and trafficking: the long and short of it. Trends Endocrinol Metab 28(3):213–226PubMedGoogle Scholar
  150. Piper PJ, Vane JR (1969) Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs. Nature 223(5201):29–35PubMedGoogle Scholar
  151. Pitcher JA, Freedman NJ et al (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692PubMedGoogle Scholar
  152. Ponimaskin E, Harteneck C et al (1998) A cysteine-11 to serine mutant of G alpha12 impairs activation through the thrombin receptor. FEBS Lett 429(3):370–374PubMedGoogle Scholar
  153. Ponimaskin E, Behn H et al (2000) Acylation of Galpha(13) is important for its interaction with thrombin receptor, transforming activity and actin stress fiber formation. FEBS Lett 478(1–2):173–177PubMedGoogle Scholar
  154. Probst WC, Snyder LA et al (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11(1):1–20PubMedGoogle Scholar
  155. Qanbar R, Bouvier M (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 97(1):1–33PubMedGoogle Scholar
  156. Ransnas LA, Svoboda P et al (1989) Stimulation of beta-adrenergic receptors of S49 lymphoma cells redistributes the alpha subunit of the stimulatory G protein between cytosol and membranes. Proc Natl Acad Sci USA 86(20):7900–7903PubMedGoogle Scholar
  157. Raychowdhury MK, Yukawa M et al (1994) Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem 269(30):19256–19261PubMedGoogle Scholar
  158. Reid HM, Kinsella BT (2003) The alpha, but not the beta, isoform of the human thromboxane A2 receptor is a target for nitric oxide-mediated desensitization. Independent modulation of Tp alpha signaling by nitric oxide and prostacyclin. J Biol Chem 278(51):51190–51202PubMedGoogle Scholar
  159. Reid HM, Kinsella BT (2007) Palmitoylation of the TPbeta isoform of the human thromboxane A2 receptor. Modulation of G protein: effector coupling and modes of receptor internalization. Cell Signal 19(5):1056–1070PubMedPubMedCentralGoogle Scholar
  160. Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451(1):1–16PubMedGoogle Scholar
  161. Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 359:re14Google Scholar
  162. Resh MD (2013) Covalent lipid modifications of proteins. Curr Biol 23(10):R431–R435PubMedPubMedCentralGoogle Scholar
  163. Sakamoto T, Weng JS et al (2014) Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol 34(1):30–42PubMedPubMedCentralGoogle Scholar
  164. Salvemini D, Kim SF et al (2013) Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol 304(7):R473–R487PubMedPubMedCentralGoogle Scholar
  165. Santhosh KT, Elkhateeb O et al (2011) Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes. Br J Pharmacol 163(6):1223–1236PubMedPubMedCentralGoogle Scholar
  166. Santhosh KT, Sikarwar AS et al (2014) Thromboxane receptor hyper-responsiveness in hypoxic pulmonary hypertension requires serine 324. Br J Pharmacol 171(3):676–687PubMedPubMedCentralGoogle Scholar
  167. Schaber J, Baltanas R et al (2012) Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol 8:622PubMedPubMedCentralGoogle Scholar
  168. Scheer A, Fanelli F et al (1996) Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15(14):3566–3578PubMedPubMedCentralGoogle Scholar
  169. Schermuly RT, Pullamsetti SS et al (2007) Iloprost-induced desensitization of the prostacyclin receptor in isolated rabbit lungs. Respir Res 8:4PubMedPubMedCentralGoogle Scholar
  170. Schwaner I, Seifert R et al (1992) The prostacyclin analogues, cicaprost and iloprost, increase cytosolic Ca2+ concentration in the human erythroleukemia cell line, HEL, via pertussis toxin-insensitive G-proteins. Eicosanoids 5(Suppl):S10–S12PubMedGoogle Scholar
  171. Schwaner I, Offermanns S et al (1995) Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL. Biochim Biophys Acta 1265(1):8–14PubMedGoogle Scholar
  172. Seasholtz TM, Gurdal H et al (1997) Desensitization of norepinephrine receptor function is associated with G protein uncoupling in the rat aorta. Am J Physiol 273(1 Pt 2):H279–H285PubMedGoogle Scholar
  173. Shi Y, Baker John E et al (2002) Chronic hypoxia increases endothelial nitric oxide synthase generation of nitric oxide by increasing heat shock protein 90 association and serine phosphorylation. Circ Res 91(4):300–306PubMedGoogle Scholar
  174. Shirato K, Nakajima K et al (2011) Hypoxic regulation of glycosylation via the N-acetylglucosamine cycle. J Clin Biochem Nutr 48(1):20–25PubMedGoogle Scholar
  175. Shrimal S, Cherepanova NA et al (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78PubMedGoogle Scholar
  176. Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 1(2):51–66PubMedPubMedCentralGoogle Scholar
  177. Sikarwar AS, Hinton M et al (2014) Palmitoylation of Galphaq determines its association with the thromboxane receptor in hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 50(1):135–143PubMedGoogle Scholar
  178. Silva-Filho AF, Sena WLB et al (2017) Glycobiology modifications in intratumoral hypoxia: the breathless side of glycans interaction. Cell Physiol Biochem 41(5):1801–1829PubMedGoogle Scholar
  179. Simko V, Takacova M et al (2016) Dexamethasone downregulates expression of carbonic anhydrase IX via HIF-1alpha and NF-kappaB-dependent mechanisms. Int J Oncol 49(4):1277–1288PubMedPubMedCentralGoogle Scholar
  180. Simon MI, Strathmann MP et al (1991) Diversity of G proteins in signal transduction. Science 252(5007):802–808PubMedGoogle Scholar
  181. Smeland TE, Seabra MC et al (1994) Geranylgeranylated Rab proteins terminating in Cys-Ala-Cys, but not Cys-Cys, are carboxyl-methylated by bovine brain membranes in vitro. Proc Natl Acad Sci USA 91(22):10712–10716PubMedGoogle Scholar
  182. Smith WL (1986) Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells. Annu Rev Physiol 48:251–262PubMedGoogle Scholar
  183. Smith JS, Rajagopal S (2016) The beta-arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem 291(17):8969–8977PubMedPubMedCentralGoogle Scholar
  184. Smyth EM, Nestor PV et al (1996) Agonist-dependent phosphorylation of an epitope-tagged human prostacyclin receptor. J Biol Chem 271(52):33698–33704PubMedGoogle Scholar
  185. Smyth EM, Li WH et al (1998) Phosphorylation of the prostacyclin receptor during homologous desensitization. A critical role for protein kinase c. J Biol Chem 273(36):23258–23266PubMedGoogle Scholar
  186. Smyth EM, Austin SC et al (2000) Internalization and sequestration of the human prostacyclin receptor. J Biol Chem 275(41):32037–32045PubMedGoogle Scholar
  187. Song KS, Sargiacomo M et al (1997) Targeting of a G alpha subunit (Gi1 alpha) and c-Src tyrosine kinase to caveolae membranes: clarifying the role of N-myristoylation. Cell Mol Biol (Noisy-le-grand) 43(3):293–303Google Scholar
  188. Soto AG, Smith TH et al (2015) N-linked glycosylation of protease-activated receptor-1 at extracellular loop 2 regulates G-protein signaling bias. Proc Natl Acad Sci USA 112(27):E3600–E3608PubMedGoogle Scholar
  189. Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?”. Mol Pharmacol 93(4):251–258PubMedPubMedCentralGoogle Scholar
  190. Stamler JS, Simon DI et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89(1):444–448PubMedGoogle Scholar
  191. Stamler JS, Toone EJ et al (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18(5):691–696PubMedGoogle Scholar
  192. Stanislaus D, Janovick JA et al (1997) Regulation of G(q/11)alpha by the gonadotropin-releasing hormone receptor. Mol Endocrinol 11(6):738–746PubMedGoogle Scholar
  193. Stanislaus D, Ponder S et al (1998) Gonadotropin-releasing hormone receptor couples to multiple G proteins in rat gonadotrophs and in GGH3 cells: evidence from palmitoylation and overexpression of G proteins. Biol Reprod 59(3):579–586PubMedGoogle Scholar
  194. Supuran CT (2018) Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 27(12):963–970PubMedGoogle Scholar
  195. Syrovatkina V, Alegre KO et al (2016) Regulation, signaling, and physiological functions of G-proteins. J Mol Biol 428(19):3850–3868PubMedPubMedCentralGoogle Scholar
  196. Tanaka K, Shimizu T et al (2012) Possible involvement of S-nitrosylation of brain cyclooxygenase-1 in bombesin-induced central activation of adrenomedullary outflow in rats. Eur J Pharmacol 679(1–3):40–50PubMedGoogle Scholar
  197. Tang T, Arbiser JL et al (2002) Phosphorylation by mitogen-activated protein kinase mediates the hypoxia-induced turnover of the TAL1/SCL transcription factor in endothelial cells. J Biol Chem 277(21):18365–18372PubMedGoogle Scholar
  198. Taussig R, Iniguez-Lluhi JA et al (1993) Inhibition of adenylyl cyclase by Gi alpha. Science 261(5118):218–221PubMedGoogle Scholar
  199. Thoma NH, Niculae A et al (2001) Double prenylation by RabGGTase can proceed without dissociation of the mono-prenylated intermediate. J Biol Chem 276(52):48631–48636PubMedGoogle Scholar
  200. Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153(Suppl 1):S167–S176PubMedPubMedCentralGoogle Scholar
  201. Torrecilla I, Tobin AB (2006) Co-ordinated covalent modification of G-protein coupled receptors. Curr Pharm Des 12(14):1797–1808PubMedGoogle Scholar
  202. Tosun M, Paul RJ et al (1998) Role of extracellular Ca++ influx via L-type and non-L-type Ca++ channels in thromboxane A2 receptor-mediated contraction in rat aorta. J Pharmacol Exp Ther 284(3):921–928PubMedGoogle Scholar
  203. Uski T, Andersson KE et al (1983) Responses of isolated feline and human cerebral arteries to prostacyclin and some of its metabolites. J Cereb Blood Flow Metab 3(2):238–245PubMedGoogle Scholar
  204. Veit M, Nurnberg B et al (1994) The alpha-subunits of G-proteins G12 and G13 are palmitoylated, but not amidically myristoylated. FEBS Lett 339(1–2):160–164PubMedGoogle Scholar
  205. Vogler O, Barcelo JM et al (2008) Membrane interactions of G proteins and other related proteins. Biochim Biophys Acta 1778(7–8):1640–1652PubMedGoogle Scholar
  206. Waheed AA, Jones TL (2002) Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 277(36):32409–32412PubMedGoogle Scholar
  207. Walsh MT, Kinsella BT (2000) Regulation of the human prostanoid TPalpha and TPbeta receptor isoforms mediated through activation of the EP(1) and IP receptors. Br J Pharmacol 131(3):601–609PubMedPubMedCentralGoogle Scholar
  208. Walsh MT, Foley JF et al (1998) Characterization of the role of N-linked glycosylation on the cell signaling and expression of the human thromboxane A2 receptor alpha and beta isoforms. J Pharmacol Exp Ther 286(2):1026–1036PubMedGoogle Scholar
  209. Walsh MT, Foley JF et al (2000) The alpha, but not the beta, isoform of the human thromboxane A2 receptor is a target for prostacyclin-mediated desensitization. J Biol Chem 275(27):20412–20423PubMedGoogle Scholar
  210. Wang GL, Jiang BH et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514PubMedGoogle Scholar
  211. Wang Y, Windh RT et al (1999) N-Myristoylation and betagamma play roles beyond anchorage in the palmitoylation of the G protein alpha(o) subunit. J Biol Chem 274(52):37435–37442PubMedGoogle Scholar
  212. Wang N, Duan L et al (2018) MicroRNA-101 protects bladder of BOO from hypoxia-induced fibrosis by attenuating TGF-beta-smad2/3 signaling. IUBMB Life 71(2):235–243PubMedGoogle Scholar
  213. Watras J, Benevolensky D (1987) Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic sarcoplasmic reticulum vesicles. Biochim Biophys Acta 931(3):354–363PubMedGoogle Scholar
  214. Wedegaertner PB (2012) G protein trafficking. Subcell Biochem 63:193–223PubMedPubMedCentralGoogle Scholar
  215. Wedegaertner PB, Bourne HR (1994) Activation and depalmitoylation of Gs alpha. Cell 77(7):1063–1070PubMedGoogle Scholar
  216. Wedegaertner PB, Chu DH et al (1993) Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem 268(33):25001–25008PubMedGoogle Scholar
  217. Wedegaertner PB, Wilson PT et al (1995) Lipid modifications of trimeric G proteins. J Biol Chem 270(2):503–506PubMedGoogle Scholar
  218. Whittaker N, Bunting S et al (1976) The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12(6):915–928PubMedGoogle Scholar
  219. Wikstrom K, Kavanagh DJ et al (2008) Differential regulation of RhoA-mediated signaling by the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor: independent modulation of TPalpha signaling by prostacyclin and nitric oxide. Cell Signal 20(8):1497–1512PubMedPubMedCentralGoogle Scholar
  220. Williams SP, Dorn GW 2nd et al (1994) Prostaglandin I2 mediates contraction and relaxation of vascular smooth muscle. Am J Physiol 267(2 Pt 2):H796–H803PubMedGoogle Scholar
  221. Wilson PT, Bourne HR (1995) Fatty acylation of alpha z. Effects of palmitoylation and myristoylation on alpha z signaling. J Biol Chem 270(16):9667–9675PubMedGoogle Scholar
  222. Wilson SJ, Smyth EM (2006) Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the delta subunit of cGMP phosphodiesterase 6. J Biol Chem 281(17):11780–11786PubMedGoogle Scholar
  223. Wilson DP, Susnjar M et al (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J 389(Pt 3):763–774PubMedPubMedCentralGoogle Scholar
  224. Wink DA, Nims RW et al (1994) Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7(4):519–525PubMedGoogle Scholar
  225. Winter J, Jakob U (2004) Beyond transcription–new mechanisms for the regulation of molecular chaperones. Crit Rev Biochem Mol Biol 39(5–6):297–317PubMedGoogle Scholar
  226. Wise A, Grassie MA et al (1997a) A cysteine-3 to serine mutation of the G-protein Gi1 alpha abrogates functional activation by the alpha 2A-adrenoceptor but not interactions with the beta gamma complex. Biochemistry 36(35):10620–10629PubMedGoogle Scholar
  227. Wise A, Parenti M et al (1997b) Interaction of the G-protein G11alpha with receptors and phosphoinositidase C: the contribution of G-protein palmitoylation and membrane association. FEBS Lett 407(3):257–260PubMedGoogle Scholar
  228. Wojciak-Stothard B, Zhao L et al (2012) Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 110(11):1423–1434PubMedPubMedCentralGoogle Scholar
  229. Wong SK (2003) G protein selectivity is regulated by multiple intracellular regions of GPCRs. Neurosignals 12(1):1–12PubMedGoogle Scholar
  230. Woodward DF, Jones RL et al (2011) International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 63(3):471–538PubMedGoogle Scholar
  231. Yang Z, Wensel TG (1992) N-myristoylation of the rod outer segment G protein, transducin, in cultured retinas. J Biol Chem 267(32):23197–23201PubMedGoogle Scholar
  232. Zhang Q, Andersen ME (2007) Dose response relationship in anti-stress gene regulatory networks. PLoS Comput Biol 3(3):e24PubMedPubMedCentralGoogle Scholar
  233. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269PubMedGoogle Scholar
  234. Zhang Z, Austin SC et al (2001) Glycosylation of the human prostacyclin receptor: role in ligand binding and signal transduction. Mol Pharmacol 60(3):480–487PubMedGoogle Scholar
  235. Zhang Q, Pi J et al (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 244(1):84–97PubMedGoogle Scholar
  236. Zhang Q, Bhattacharya S et al (2015) Adaptive posttranslational control in cellular stress response pathways and its relationship to toxicity testing and safety assessment. Toxicol Sci 147(2):302–316PubMedPubMedCentralGoogle Scholar
  237. Zhao M, Zhang Z (2016) Glucose transporter regulation in cancer: a profile and the loops. Crit Rev Eukaryot Gene Expr 26(3):223–238PubMedGoogle Scholar
  238. Zhao H, Sun J et al (2011) Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury. Am J Physiol-Heart Circ Physiol 301(4):H1513–H1518PubMedPubMedCentralGoogle Scholar
  239. Zhou SN, Lu JX et al (2019) S-nitrosylation of prostacyclin synthase instigates nitrate cross-tolerance in vivo. Clin Pharmacol Ther 105(1):201–209PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biology of Breathing GroupChildren’s Hospital Research Institute of ManitobaWinnipegCanada
  2. 2.Departments of Oral BiologyUniversity of ManitobaWinnipegCanada
  3. 3.Departments of PediatricsUniversity of ManitobaWinnipegCanada
  4. 4.Departments of PhysiologyUniversity of ManitobaWinnipegCanada
  5. 5.Section of Neonatology, WS012 Women’s HospitalUniversity of ManitobaWinnipegCanada

Personalised recommendations