Advertisement

The Journal of Membrane Biology

, Volume 252, Issue 4–5, pp 293–306 | Cite as

A Molecular Perspective on Mitochondrial Membrane Fusion: From the Key Players to Oligomerization and Tethering of Mitofusin

  • Dario De VecchisEmail author
  • Astrid Brandner
  • Marc Baaden
  • Mickael M. Cohen
  • Antoine TalyEmail author
Article
Part of the following topical collections:
  1. Membrane and Receptor Dynamics

Abstract

Mitochondria are dynamic organelles characterized by an ultrastructural organization which is essential in maintaining their quality control and ensuring functional efficiency. The complex mitochondrial network is the result of the two ongoing forces of fusion and fission of inner and outer membranes. Understanding the functional details of mitochondrial dynamics is physiologically relevant as perturbations of this delicate equilibrium have critical consequences and involved in several neurological disorders. Molecular actors involved in this process are large GTPases from the dynamin-related protein family. They catalyze nucleotide-dependent membrane remodeling and are widely conserved from bacteria to higher eukaryotes. Although structural characterization of different family members has contributed in understanding molecular mechanisms of mitochondrial dynamics in more detail, the complete structure of some members as well as the precise assembly of functional oligomers remains largely unknown. As increasing structural data become available, the domain modularity across the dynamin superfamily emerged as a foundation for transfering the knowledge towards less characterized members. In this review, we will first provide an overview of the main actors involved in mitochondrial dynamics. We then discuss recent example of computational methodologies for the study of mitofusin oligomers, and present how the usage of integrative modeling in conjunction with biochemical data can be an asset in progressing the still challenging field of membrane dynamics.

Keywords

Mitofusin Fzo1 Mitochondrial dynamics Mitochondrial fusion Mitochondrial fission Dynamin-related proteins 

Notes

Acknowledgements

This work was supported by the “Initiative d’Excellence” program from the French State (Grants “DYNAMO,” ANR-11-LABX-0011, and “CACSICE,” ANR-11-EQPX-0008).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Research Involving Human Participants and/or Animals

This research does not involve human participants or animals.

References

  1. Abrams AJ, Hufnagel RB, Rebelo A et al (2015) Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat Genet 47:926–932.  https://doi.org/10.1038/ng.3354 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aldridge AC, Benson LP, Siegenthaler MM et al (2007) Roles for Drp1, a dynamin-related protein, and milton, a kinesin-associated protein, in mitochondrial segregation, unfurling and elongation during Drosophila spermatogenesis. Fly (Austin) 1:38–46CrossRefGoogle Scholar
  3. Altmann K, Frank M, Neumann D et al (2008) The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J Cell Biol 181:119–130.  https://doi.org/10.1083/jcb.200709099 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anand R, Wai T, Baker MJ et al (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929.  https://doi.org/10.1083/jcb.201308006 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anand R, Eschenburg S, Reubold TF (2016) Crystal structure of the GTPase domain and the bundle signalling element of dynamin in the GDP state. Biochem Biophys Res Commun 469:76–80.  https://doi.org/10.1016/j.bbrc.2015.11.074 CrossRefPubMedGoogle Scholar
  6. Anton F, Fres JM, Schauss A et al (2011) Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion. J Cell Sci 124:1126–1135.  https://doi.org/10.1242/jcs.073080 CrossRefPubMedGoogle Scholar
  7. Anton F, Dittmar G, Langer T, Escobar-Henriques M (2013) Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol Cell 49:487–498.  https://doi.org/10.1016/j.molcel.2012.12.003 CrossRefPubMedGoogle Scholar
  8. Aung K, Hu J (2012) Differential roles of Arabidopsis dynamin-related proteins DRP3A, DRP3B, and DRP5B in organelle division. J Integr Plant Biol 54:921–931.  https://doi.org/10.1111/j.1744-7909.2012.01174.x CrossRefPubMedGoogle Scholar
  9. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495.  https://doi.org/10.1016/j.cell.2005.02.001 CrossRefPubMedGoogle Scholar
  10. Ban T, Heymann JAW, Song Z et al (2010) OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet 19:2113–2122.  https://doi.org/10.1093/hmg/ddq088 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ban T, Ishihara T, Kohno H et al (2017) Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat Cell Biol 19:856–863.  https://doi.org/10.1038/ncb3560 CrossRefPubMedGoogle Scholar
  12. Beręsewicz M, Boratyńska-Jasińska A, Charzewski Ł et al (2017) The effect of a novel c.820C>T (Arg274Trp) mutation in the mitofusin 2 gene on fibroblast metabolism and clinical manifestation in a patient. PLoS ONE 12:e0169999.  https://doi.org/10.1371/journal.pone.0169999 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Beręsewicz M, Charzewski Ł, Krzyśko KA et al (2018) Molecular modelling of mitofusin 2 for a prediction for Charcot-Marie-Tooth 2A clinical severity. Sci Rep.  https://doi.org/10.1038/s41598-018-35133-9 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bertholet AM, Delerue T, Millet AM et al (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19.  https://doi.org/10.1016/j.nbd.2015.10.011 CrossRefPubMedGoogle Scholar
  15. Betancourt-Solis MA, Desai T, McNew JA (2018) The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer. J Biol Chem 293:18514–18524.  https://doi.org/10.1074/jbc.RA118.003812 CrossRefPubMedGoogle Scholar
  16. Birner R, Bürgermeister M, Schneiter R, Daum G (2001) Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol Biol Cell 12:997–1007CrossRefGoogle Scholar
  17. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166CrossRefGoogle Scholar
  18. Boot M, Sparrius M, Jim KK et al (2016) iniBAC induction is vitamin B12- and MutAB-dependent in Mycobacterium marinum. J Biol Chem 291:19800–19812.  https://doi.org/10.1074/jbc.M116.724088 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boot M, van Winden VJC, Sparrius M et al (2017) Cell envelope stress in mycobacteria is regulated by the novel signal transduction ATPase IniR in response to trehalose. PLoS Genet 13:e1007131.  https://doi.org/10.1371/journal.pgen.1007131 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Brandner A, De Vecchis D, Baaden M, Cohen MM, Taly A (2019) Physics-based oligomeric models of the yeast mitofusin Fzo1 at the molecular scale in the context of membrane docking. Mitochondrion.  https://doi.org/10.1016/j.mito.2019.06.010 CrossRefPubMedGoogle Scholar
  21. Brandt T, Cavellini L, Kühlbrandt W, Cohen MM (2016) A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro. Elife.  https://doi.org/10.7554/eLife.14618 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Braun RJ, Westermann B (2011) Mitochondrial dynamics in yeast cell death and aging. Biochem Soc Trans 39:1520–1526.  https://doi.org/10.1042/BST0391520 CrossRefPubMedGoogle Scholar
  23. Bürmann F, Ebert N, van Baarle S, Bramkamp M (2011) A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion. Mol Microbiol 79:1294–1304.  https://doi.org/10.1111/j.1365-2958.2011.07523.x CrossRefPubMedGoogle Scholar
  24. Cao Y-L, Meng S, Chen Y et al (2017) MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542:372–376.  https://doi.org/10.1038/nature21077 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287.  https://doi.org/10.1146/annurev-genet-110410-132529 CrossRefPubMedGoogle Scholar
  26. Chan EYL, McQuibban GA (2012) Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). J Biol Chem 287:40131–40139.  https://doi.org/10.1074/jbc.M112.399428 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chappie JS, Acharya S, Leonard M et al (2010) G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465:435–440.  https://doi.org/10.1038/nature09032 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chappie JS, Mears JA, Fang S et al (2011) A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147:209–222.  https://doi.org/10.1016/j.cell.2011.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200.  https://doi.org/10.1083/jcb.200211046 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192.  https://doi.org/10.1074/jbc.M503062200 CrossRefPubMedGoogle Scholar
  31. Choi S-Y, Huang P, Jenkins GM et al (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255–1262.  https://doi.org/10.1038/ncb1487 CrossRefPubMedGoogle Scholar
  32. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101:15927–15932.  https://doi.org/10.1073/pnas.0407043101 CrossRefPubMedGoogle Scholar
  33. Cohen MM, Tareste D (2018) Recent insights into the structure and function of Mitofusins in mitochondrial fusion. F1000Res.  https://doi.org/10.12688/f1000research.16629.1 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cohen MM, Amiott EA, Day AR et al (2011) Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion. J Cell Sci 124:1403–1410.  https://doi.org/10.1242/jcs.079293 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Corradi V, Sejdiu BI, Mesa-Galloso H et al (2019) Emerging diversity in lipid-protein interactions. Chem Rev.  https://doi.org/10.1021/acs.chemrev.8b00451 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Daste F, Sauvanet C, Bavdek A et al (2018) The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep.  https://doi.org/10.15252/embr.201643637 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Daumke O, Praefcke GJK (2016) Invited review: mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Biopolymers 105:580–593.  https://doi.org/10.1002/bip.22855 CrossRefPubMedPubMedCentralGoogle Scholar
  38. De Vecchis D, Cavellini L, Baaden M et al (2017) A membrane-inserted structural model of the yeast mitofusin Fzo1. Sci Rep 7:10217.  https://doi.org/10.1038/s41598-017-10687-2 CrossRefPubMedPubMedCentralGoogle Scholar
  39. DeVay RM, Dominguez-Ramirez L, Lackner LL et al (2009) Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 186:793–803.  https://doi.org/10.1083/jcb.200906098 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dever TE, Glynias MJ, Merrick WC (1987) GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84:1814–1818CrossRefGoogle Scholar
  41. Dohm JA, Lee SJ, Hardwick JM et al (2004) Cytosolic domain of the human mitochondrial fission protein fis1 adopts a TPR fold. Proteins 54:153–156.  https://doi.org/10.1002/prot.10524 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Eckert DM, Kim PS (2001) Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70:777–810.  https://doi.org/10.1146/annurev.biochem.70.1.777 CrossRefPubMedGoogle Scholar
  43. Ehses S, Raschke I, Mancuso G et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036.  https://doi.org/10.1083/jcb.200906084 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Escobar-Henriques M, Anton F (2013) Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. Biochim Biophys Acta 1833:162–175.  https://doi.org/10.1016/j.bbamcr.2012.07.016 CrossRefPubMedGoogle Scholar
  45. Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88.  https://doi.org/10.1038/nrm3266 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Findinier J, Delevoye C, Cohen MM (2019) The dynamin-like protein Fzl promotes thylakoid fusion and resistance to light stress in Chlamydomonas reinhardtii. PLoS Genet 15:e1008047.  https://doi.org/10.1371/journal.pgen.1008047 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fonseca TB, Sánchez-Guerrero Á, Milosevic I, Raimundo N (2019) Mitochondrial fission requires DRP1 but not dynamins. Nature 570:E34–E42.  https://doi.org/10.1038/s41586-019-1296-y CrossRefPubMedGoogle Scholar
  48. Franco A, Kitsis RN, Fleischer JA et al (2016) Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature 540:74–79.  https://doi.org/10.1038/nature20156 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Frezza C, Cipolat S, Martins de Brito O et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189.  https://doi.org/10.1016/j.cell.2006.06.025 CrossRefPubMedGoogle Scholar
  50. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343.  https://doi.org/10.1038/nature12985 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Friedman JR, Lackner LL, West M et al (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362.  https://doi.org/10.1126/science.1207385 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Friedman R, Khalid S, Aponte-Santamaría C et al (2018) Understanding conformational dynamics of complex lipid mixtures relevant to biology. J Membr Biol 251:609–631.  https://doi.org/10.1007/s00232-018-0050-y CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fritz S, Rapaport D, Klanner E et al (2001) Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J Cell Biol 152:683–692CrossRefGoogle Scholar
  54. Fröhlich C, Grabiger S, Schwefel D et al (2013) Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J 32:1280–1292.  https://doi.org/10.1038/emboj.2013.74 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Fujimoto M, Arimura S, Ueda T et al (2010) Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc Natl Acad Sci USA 107:6094–6099.  https://doi.org/10.1073/pnas.0913562107 CrossRefPubMedGoogle Scholar
  56. Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW (2003) ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci USA 100:4328–4333.  https://doi.org/10.1073/pnas.0530206100 CrossRefPubMedGoogle Scholar
  57. Gao H, Sage TL, Osteryoung KW (2006) FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc Natl Acad Sci USA 103:6759–6764.  https://doi.org/10.1073/pnas.0507287103 CrossRefPubMedGoogle Scholar
  58. Georgakopoulos ND, Wells G, Campanella M (2017) The pharmacological regulation of cellular mitophagy. Nat Chem Biol 13:136–146.  https://doi.org/10.1038/nchembio.2287 CrossRefPubMedGoogle Scholar
  59. Ghosh A, Praefcke GJK, Renault L et al (2006) How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature 440:101–104.  https://doi.org/10.1038/nature04510 CrossRefPubMedGoogle Scholar
  60. Griffin EE, Chan DC (2006) Domain interactions within Fzo1 oligomers are essential for mitochondrial fusion. J Biol Chem 281:16599–16606.  https://doi.org/10.1074/jbc.M601847200 CrossRefPubMedGoogle Scholar
  61. Griffin EE, Graumann J, Chan DC (2005) The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170:237–248.  https://doi.org/10.1083/jcb.200503148 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764.  https://doi.org/10.1083/jcb.200704112 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Guillou E, Bousquet C, Daloyau M et al (2005) Msp1p is an intermembrane space dynamin-related protein that mediates mitochondrial fusion in a Dnm1p-dependent manner in S. pombe. FEBS Lett 579:1109–1116.  https://doi.org/10.1016/j.febslet.2004.12.083 CrossRefPubMedGoogle Scholar
  64. Haitina T, Lindblom J, Renström T, Fredriksson R (2006) Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics 88:779–790.  https://doi.org/10.1016/j.ygeno.2006.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Hales KG, Fuller MT (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90:121–129CrossRefGoogle Scholar
  66. Head B, Griparic L, Amiri M et al (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966.  https://doi.org/10.1083/jcb.200906083 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Herlan M, Vogel F, Bornhovd C et al (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781–27788.  https://doi.org/10.1074/jbc.M211311200 CrossRefPubMedGoogle Scholar
  68. Hermann GJ, Thatcher JW, Mills JP et al (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol 143:359–373CrossRefGoogle Scholar
  69. Hoppins S, Horner J, Song C et al (2009) Mitochondrial outer and inner membrane fusion requires a modified carrier protein. J Cell Biol 184:569–581.  https://doi.org/10.1083/jcb.200809099 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hu J, Shibata Y, Zhu P-P et al (2009) A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138:549–561.  https://doi.org/10.1016/j.cell.2009.05.025 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Huang P, Galloway CA, Yoon Y (2011) Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS ONE 6:e20655.  https://doi.org/10.1371/journal.pone.0020655 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Huang J, Fujimoto M, Fujiwara M et al (2015) Arabidopsis dynamin-related proteins, DRP2A and DRP2B, function coordinately in post-Golgi trafficking. Biochem Biophys Res Commun 456:238–244.  https://doi.org/10.1016/j.bbrc.2014.11.065 CrossRefPubMedGoogle Scholar
  73. Huang X, Zhou X, Hu X et al (2017) Sequences flanking the transmembrane segments facilitate mitochondrial localization and membrane fusion by mitofusin. Proc Natl Acad Sci USA 114:E9863–E9872.  https://doi.org/10.1073/pnas.1708782114 CrossRefPubMedGoogle Scholar
  74. Hwa JJ, Hiller MA, Fuller MT, Santel A (2002) Differential expression of the Drosophila mitofusin genes fuzzy onions (fzo) and dmfn. Mech Dev 116:213–216CrossRefGoogle Scholar
  75. Ishihara N, Jofuku A, Eura Y, Mihara K (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 301:891–898CrossRefGoogle Scholar
  76. Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 117:6535–6546.  https://doi.org/10.1242/jcs.01565 CrossRefPubMedGoogle Scholar
  77. Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966.  https://doi.org/10.1038/ncb1907 CrossRefPubMedGoogle Scholar
  78. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23:64–71.  https://doi.org/10.1016/j.tcb.2012.10.006 CrossRefPubMedGoogle Scholar
  79. Jahn R, Grubmüller H (2002) Membrane fusion. Curr Opin Cell Biol 14:488–495CrossRefGoogle Scholar
  80. Jensen RE, Sesaki H (2006) Ahead of the curve: mitochondrial fusion and phospholipase D. Nat Cell Biol 8:1215–1217.  https://doi.org/10.1038/ncb1106-1215 CrossRefPubMedGoogle Scholar
  81. Joshi AS, Thompson MN, Fei N et al (2012) Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287:17589–17597.  https://doi.org/10.1074/jbc.M111.330167 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kameoka S, Adachi Y, Okamoto K et al (2018) Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol 28:67–76.  https://doi.org/10.1016/j.tcb.2017.08.011 CrossRefPubMedGoogle Scholar
  83. Kanazawa T, Zappaterra MD, Hasegawa A et al (2008) The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet 4:e1000022.  https://doi.org/10.1371/journal.pgen.1000022 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Khaminets A, Behl C, Dikic I (2016) Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16.  https://doi.org/10.1016/j.tcb.2015.08.010 CrossRefPubMedGoogle Scholar
  85. Kim KT, Moon Y, Jang Y et al (2017) Molecular mechanisms of atlastin-mediated ER membrane fusion revealed by a FRET-based single-vesicle fusion assay. Sci Rep 7:8700.  https://doi.org/10.1038/s41598-017-09162-9 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Klein DE, Lee A, Frank DW et al (1998) The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem 273:27725–27733CrossRefGoogle Scholar
  87. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518.  https://doi.org/10.1038/nrn2417 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kong L, Sochacki KA, Wang H et al (2018) Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560:258–262.  https://doi.org/10.1038/s41586-018-0378-6 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Koshiba T, Detmer SA, Kaiser JT et al (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862.  https://doi.org/10.1126/science.1099793 CrossRefPubMedGoogle Scholar
  90. Kraus F, Ryan MT (2017) The constriction and scission machineries involved in mitochondrial fission. J Cell Sci 130:2953–2960.  https://doi.org/10.1242/jcs.199562 CrossRefPubMedGoogle Scholar
  91. Kuznetsov AV, Hermann M, Saks V et al (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41:1928–1939.  https://doi.org/10.1016/j.biocel.2009.03.007 CrossRefPubMedGoogle Scholar
  92. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4:815–826CrossRefGoogle Scholar
  93. Lee JE, Westrate LM, Wu H et al (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540:139–143.  https://doi.org/10.1038/nature20555 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lee M, Moon Y, Lee S et al (2019) Ergosterol interacts with Sey1p to promote atlastin-mediated endoplasmic reticulum membrane fusion in Saccharomyces cerevisiae. FASEB J 33:3590–3600.  https://doi.org/10.1096/fj.201800779RR CrossRefPubMedGoogle Scholar
  95. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72.  https://doi.org/10.1006/jmbi.2001.5378 CrossRefPubMedGoogle Scholar
  96. Leroy I, Khosrobakhsh F, Diot A et al (2010) Processing of the dynamin Msp1p in S. pombe reveals an evolutionary switch between its orthologs Mgm1p in S. cerevisiae and OPA1 in mammals. FEBS Lett 584:3153–3157.  https://doi.org/10.1016/j.febslet.2010.05.060 CrossRefPubMedGoogle Scholar
  97. Li Z, Okamoto K-I, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887.  https://doi.org/10.1016/j.cell.2004.11.003 CrossRefPubMedGoogle Scholar
  98. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506.  https://doi.org/10.1016/j.cmet.2013.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Liu J, Noel JK, Low HH (2018) Structural basis for membrane tethering by a bacterial dynamin-like pair. Nat Commun 9:3345.  https://doi.org/10.1038/s41467-018-05523-8 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Logan DC (2010) The dynamic plant chondriome. Semin Cell Dev Biol 21:550–557.  https://doi.org/10.1016/j.semcdb.2009.12.010 CrossRefPubMedGoogle Scholar
  101. Low HH, Löwe J (2006) A bacterial dynamin-like protein. Nature 444:766–769.  https://doi.org/10.1038/nature05312 CrossRefPubMedGoogle Scholar
  102. Low HH, Sachse C, Amos LA, Löwe J (2009) Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139:1342–1352.  https://doi.org/10.1016/j.cell.2009.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  103. MacVicar T, Langer T (2016) OPA1 processing in cell death and disease—the long and short of it. J Cell Sci 129:2297–2306.  https://doi.org/10.1242/jcs.159186 CrossRefPubMedGoogle Scholar
  104. Maiese K (2016) The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2:185–187.  https://doi.org/10.15761/JTS.1000138 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Marrink SJ, Corradi V, Souza PCT et al (2019) Computational modeling of realistic cell membranes. Chem Rev.  https://doi.org/10.1021/acs.chemrev.8b00460 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Mattie S, Riemer J, Wideman JG, McBride HM (2018) A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space. J Cell Biol 217:507–515.  https://doi.org/10.1083/jcb.201611194 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Mattie S, Krols M, McBride HM (2019) The enigma of an interconnected mitochondrial reticulum: new insights into mitochondrial fusion. Curr Opin Cell Biol 59:159–166.  https://doi.org/10.1016/j.ceb.2019.05.004 CrossRefPubMedGoogle Scholar
  108. Mears JA, Lackner LL, Fang S et al (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26.  https://doi.org/10.1038/nsmb.1949 CrossRefPubMedGoogle Scholar
  109. Meeusen S, DeVay R, Block J et al (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383–395.  https://doi.org/10.1016/j.cell.2006.09.021 CrossRefPubMedGoogle Scholar
  110. Mendonsa R, Engebrecht J (2009) Phosphatidylinositol-4,5-bisphosphate and phospholipase D-generated phosphatidic acid specify SNARE-mediated vesicle fusion for prospore membrane formation. Eukaryot Cell 8:1094–1105.  https://doi.org/10.1128/EC.00076-09 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Merz S, Westermann B (2009) Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol 10:R95.  https://doi.org/10.1186/gb-2009-10-9-r95 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Michie KA, Boysen A, Low HH et al (2014) LeoA, B and C from enterotoxigenic Escherichia coli (ETEC) are bacterial dynamins. PLoS ONE 9:e107211.  https://doi.org/10.1371/journal.pone.0107211 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380CrossRefGoogle Scholar
  114. Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536.  https://doi.org/10.1146/annurev.genet.38.072902.093019 CrossRefPubMedGoogle Scholar
  115. Olichon A, Emorine LJ, Descoins E et al (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523:171–176CrossRefGoogle Scholar
  116. Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746.  https://doi.org/10.1074/jbc.C200677200 CrossRefPubMedGoogle Scholar
  117. Ono T, Isobe K, Nakada K, Hayashi JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275.  https://doi.org/10.1038/90116 CrossRefPubMedGoogle Scholar
  118. Orso G, Pendin D, Liu S et al (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460:978–983.  https://doi.org/10.1038/nature08280 CrossRefPubMedGoogle Scholar
  119. Osellame LD, Singh AP, Stroud DA et al (2016) Cooperative and independent roles of Drp1 adaptors Mff and MiD49/51 in mitochondrial fission. J Cell Sci.  https://doi.org/10.1242/jcs.185165 CrossRefPubMedGoogle Scholar
  120. Osman C, Haag M, Potting C et al (2009) The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J Cell Biol 184:583–596.  https://doi.org/10.1083/jcb.200810189 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Otera H, Wang C, Cleland MM et al (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158.  https://doi.org/10.1083/jcb.201007152 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Otsuga D, Keegan BR, Brisch E et al (1998) The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 143:333–349CrossRefGoogle Scholar
  123. Ozturk SB, Kinzy TG (2008) Guanine nucleotide exchange factor independence of the G-protein eEF1A through novel mutant forms and biochemical properties. J Biol Chem 283:23244–23253.  https://doi.org/10.1074/jbc.M801095200 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Palmer CS, Osellame LD, Laine D et al (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12:565–573.  https://doi.org/10.1038/embor.2011.54 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Pfeiffer K, Gohil V, Stuart RA et al (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880.  https://doi.org/10.1074/jbc.M308366200 CrossRefPubMedGoogle Scholar
  126. Praefcke GJK, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147.  https://doi.org/10.1038/nrm1313 CrossRefPubMedGoogle Scholar
  127. Purkanti R, Thattai M (2015) Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc Natl Acad Sci USA 112:2800–2805.  https://doi.org/10.1073/pnas.1407163112 CrossRefPubMedGoogle Scholar
  128. Qi Y, Yan L, Yu C et al (2016) Structures of human mitofusin 1 provide insight into mitochondrial tethering. J Cell Biol 215:621–629.  https://doi.org/10.1083/jcb.201609019 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Ramachandran R (2018) Mitochondrial dynamics: the dynamin superfamily and execution by collusion. Semin Cell Dev Biol 76:201–212.  https://doi.org/10.1016/j.semcdb.2017.07.039 CrossRefPubMedGoogle Scholar
  130. Rapaport D, Brunner M, Neupert W, Westermann B (1998) Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J Biol Chem 273:20150–20155CrossRefGoogle Scholar
  131. Rojo M, Legros F, Chateau D, Lombès A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674PubMedGoogle Scholar
  132. Roth MG (2008) Molecular mechanisms of PLD function in membrane traffic. Traffic 9:1233–1239.  https://doi.org/10.1111/j.1600-0854.2008.00742.x CrossRefPubMedGoogle Scholar
  133. Rujiviphat J, Meglei G, Rubinstein JL, McQuibban GA (2009) Phospholipid association is essential for dynamin-related protein Mgm1 to function in mitochondrial membrane fusion. J Biol Chem 284:28682–28686.  https://doi.org/10.1074/jbc.M109.044933 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114:867–874PubMedGoogle Scholar
  135. Santel A, Frank S, Gaume B et al (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116:2763–2774.  https://doi.org/10.1242/jcs.00479 CrossRefPubMedGoogle Scholar
  136. Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434CrossRefGoogle Scholar
  137. Sawant P, Eissenberger K, Karier L et al (2016) A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress. Environ Microbiol 18:2705–2720.  https://doi.org/10.1111/1462-2920.13110 CrossRefPubMedGoogle Scholar
  138. Sesaki H, Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147:699–706.  https://doi.org/10.1083/jcb.147.4.699 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Sesaki H, Jensen RE (2001) UGO1 encodes an outer membrane protein required for mitochondrial fusion. J Cell Biol 152:1123–1134CrossRefGoogle Scholar
  140. Sesaki H, Jensen RE (2004) Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J Biol Chem 279:28298–28303.  https://doi.org/10.1074/jbc.M401363200 CrossRefPubMedGoogle Scholar
  141. Shutt T, Geoffrion M, Milne R, McBride HM (2012) The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep 13:909–915.  https://doi.org/10.1038/embor.2012.128 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Sinha S, Manoj N (2019) Molecular evolution of proteins mediating mitochondrial fission–fusion dynamics. FEBS Lett 593:703–718.  https://doi.org/10.1002/1873-3468.13356 CrossRefPubMedGoogle Scholar
  143. Skehel JJ, Wiley DC (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95:871–874CrossRefGoogle Scholar
  144. Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26:23–29CrossRefGoogle Scholar
  145. Sloat SR, Whitley BN, Engelhart EA, Hoppins S (2019) Identification of a Mitofusin specificity region that confers unique activities to Mfn1 and Mfn2. Mol Biol Cell.  https://doi.org/10.1091/mbc.e19-05-0291 CrossRefPubMedGoogle Scholar
  146. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358CrossRefGoogle Scholar
  147. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256CrossRefGoogle Scholar
  148. Song Z, Chen H, Fiket M et al (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755.  https://doi.org/10.1083/jcb.200704110 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93:1021–1029CrossRefGoogle Scholar
  150. Taguchi N, Ishihara N, Jofuku A et al (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529.  https://doi.org/10.1074/jbc.M607279200 CrossRefPubMedGoogle Scholar
  151. Tieu Q, Okreglak V, Naylor K, Nunnari J (2002) The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol 158:445–452.  https://doi.org/10.1083/jcb.200205031 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360.  https://doi.org/10.1042/EBC20170104 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Tondera D, Grandemange S, Jourdain A et al (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–1600.  https://doi.org/10.1038/emboj.2009.89 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Ungar D, Hughson FM (2003) SNARE protein structure and function. Annu Rev Cell Dev Biol 19:493–517.  https://doi.org/10.1146/annurev.cellbio.19.110701.155609 CrossRefPubMedGoogle Scholar
  155. van der Bliek AM (1999) Functional diversity in the dynamin family. Trends Cell Biol 9:96–102CrossRefGoogle Scholar
  156. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304.  https://doi.org/10.1126/science.1062023 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Wilschut J, Düzgüneş N, Papahadjopoulos D (1981) Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 20:3126–3133CrossRefGoogle Scholar
  158. Wong ED, Wagner JA, Gorsich SW et al (2000) The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol 151:341–352CrossRefGoogle Scholar
  159. Wong ED, Wagner JA, Scott SV et al (2003) The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol 160:303–311.  https://doi.org/10.1083/jcb.200209015 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yan L, Sun S, Wang W et al (2015) Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion. J Cell Biol 210:961–972.  https://doi.org/10.1083/jcb.201502078 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Yan L, Qi Y, Huang X et al (2018) Structural basis for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion. Nat Struct Mol Biol 25:233–243.  https://doi.org/10.1038/s41594-018-0034-8 CrossRefPubMedGoogle Scholar
  162. Yu R, Jin S, Lendahl U et al (2019) Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J.  https://doi.org/10.15252/embj.201899748 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Zhang Q, Tamura Y, Roy M et al (2014) Biosynthesis and roles of phospholipids in mitochondrial fusion, division and mitophagy. Cell Mol Life Sci 71:3767–3778.  https://doi.org/10.1007/s00018-014-1648-6 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Zinser E, Sperka-Gottlieb CD, Fasch EV et al (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol 173:2026–2034CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Medicine, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
  2. 2.CNRS, Université de Paris, UPR 9080Laboratoire de Biochimie ThéoriqueParisFrance
  3. 3.Institut de Biologie Physico-Chimique - Fondation Edmond de RothschildPSL Research UniversityParisFrance
  4. 4.Laboratoire de Biologie Cellulaire et Moléculaire des EucaryotesSorbonne Université, CNRS, UMR 8226ParisFrance

Personalised recommendations