Advertisement

The Journal of Membrane Biology

, Volume 252, Issue 4–5, pp 227–240 | Cite as

Temperature Dependence of the Structure and Dynamics of a Dye-Labeled Lipid in a Planar Phospholipid Bilayer: A Computational Study

  • Muhammad Jan Akhunzada
  • Luca Sagresti
  • Andrea CatteEmail author
  • Nicholus Bhattacharjee
  • Tommaso D’Agostino
  • Giuseppe BrancatoEmail author
Article
  • 99 Downloads
Part of the following topical collections:
  1. Membrane and Receptor Dynamics

Abstract

Fluorescent probes are widely employed to label lipids for the investigation of structural and dynamic properties of model and cell membranes through optical microscopy techniques. Although the effect of tagging a lipid with an organic dye is generally assumed to be negligible, optically modified lipids can nonetheless affect the local lipid structure and, in turn, the lipid lateral mobility. To better assess this potential issue, all-atom (MD) molecular dynamics simulations have been performed to study structural and dynamic effects in a model DOPC membrane in the presence of a standard Rhodamine B-labeled DOPE lipid (RHB) as a function of temperature, i.e., 293 K, 303 K, and 320 K. As the temperature is increased, we observe similar changes in the structural properties of both pure DOPC and RHB-DOPC lipid bilayers: an increase of the area per lipid, a reduction of the membrane thickness and a decrease of lipid order parameters. The partial density profile of the RHB headgroups and their orientation within the lipid bilayer confirm the amphiphilic nature of the RHB fluorescent moiety, which mainly partitions in the DOPC glycerol backbone region at each temperature. Moreover, at all temperatures, our results on lipid lateral diffusion support a non-neutral role of the dye with respect to the unlabeled lipid mobility, thus suggesting important implications for optical microscopy studies of lipid membranes.

Keywords

Lipid lateral diffusion DOPC Rhodamine B-labeled lipids Temperature dependence Molecular dynamics simulations 

Notes

Acknowledgements

G.B. acknowledges the financial support of the INFN, the Scuola Normale Superiore research program, and the FAS Salute Regione Toscana Project “DIAMANTE.” The CINECA and Avogadro computing centers are also thanked.

Author Contributions

MJA and LS contributed equally to this work. MJA, LS, and AC performed all the simulations and the analysis of this work. NB and TDA helped with the analysis of the results. AC and GB conceived the idea, designed and supervised the research work, and wrote the manuscript supported by all other authors.

Compliance with Ethical Standards

Conflict of interest

The authors declare no kind of competing interests.

Supplementary material

232_2019_81_MOESM1_ESM.pdf (10 mb)
Supplementary material 1 (PDF 10273 kb)

References

  1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25Google Scholar
  2. Akhunzada MJ, Chandramouli B, Bhattacharjee N, Macchi S, Cardarelli F, Brancato G (2017) The role of Tat peptide self-aggregation in membrane pore stabilization: insights from a computational study. Phys Chem Chem Phys 19:27603–27610Google Scholar
  3. Akhunzada MJ, D’Autilia F, Chandramouli B, Bhattacharjee N, Catte A, Di Rienzo R, Cardarelli F, Brancato G (2019) Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer. Sci Rep 9:1508Google Scholar
  4. Amaro M, Filipe HAL, Ramalho JPP, Hof M, Loura LMS (2016) Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location. Phys Chem Chem Phys 18:7042–7054PubMedGoogle Scholar
  5. Bacalum M, Wang L, Boodts S, Yuan P, Leen V, Smisdom N, Fron E, Knippenberg S, Fabre G, Trouillas P, Beljonne D, Dehaen W, Boens N, Ameloot M (2016) A blue-light-emitting BODIPY probe for lipid membranes. Langmuir 32:3495–3505PubMedGoogle Scholar
  6. Böckmann RA, Hac A, Heimburg T, Grubmüller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655PubMedPubMedCentralGoogle Scholar
  7. Brancato G, Signore G, Neyroz P, Polli D, Cerullo G, Abbandonato G, Nucara L, Barone V, Beltram F, Bizzarri R (2015) Dual fluorescence through Kasha’s rule breaking: an unconventional photomechanism for intracellular probe design. J Phys Chem B 119:6144–6154PubMedGoogle Scholar
  8. Camley BA, Lerner MG, Pastor RW, Brown FLH (2015) Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes. J Chem Phys 143:243113PubMedPubMedCentralGoogle Scholar
  9. Capponi S, Freites JA, Tobias DJ, White SH (2016) Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers. Biochim Biophys Acta BBA 1858:354–362PubMedGoogle Scholar
  10. Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham Iii TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW (2015) AMBER 2015. University of California, San FranciscoGoogle Scholar
  11. Castro BM, de Almeida RFM, Fedorov A, Prieto M (2012) The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases. Chem Phys Lipids 165:311–319PubMedGoogle Scholar
  12. Chiantia S, Ries J, Kahya N, Schwille P (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. ChemPhysChem 7:2409–2418PubMedGoogle Scholar
  13. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681PubMedGoogle Scholar
  14. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092Google Scholar
  15. Di Rienzo C, Gratton E, Beltram F, Cardarelli F (2013) Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Proc Natl Acad Sci 110:12307–12312PubMedGoogle Scholar
  16. do Canto AMTM, Robalo JR, Santos PD, Carvalho AJP, Ramalho JPP, Loura LMS (2016) Diphenylhexatriene membrane probes DPH and TMA-DPH: a comparative molecular dynamics simulation study. Biochim Biophys Acta BBA 1858:2647–2661PubMedGoogle Scholar
  17. Edidin M (2003) Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol 4:414–418PubMedGoogle Scholar
  18. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162PubMedPubMedCentralGoogle Scholar
  19. Falck E, Róg T, Karttunen M, Vattulainen I (2008) Lateral diffusion in lipid membranes through collective flows. J Am Chem Soc 130:44–45PubMedGoogle Scholar
  20. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621Google Scholar
  21. Filipe HAL, Santos LS, Ramalho JPP, Moreno MJ, Loura LMS (2015) Behaviour of NBD-head group labelled phosphatidylethanolamines in POPC bilayers: a molecular dynamics study. Phys Chem Chem Phys 17:20066–20079PubMedGoogle Scholar
  22. Filipe HAL, Pokorná Š, Hof M, Amaro M, Loura LMS (2019) Orientation of nitro-group governs the fluorescence lifetime of nitrobenzoxadiazole (NBD)-labeled lipids in lipid bilayers. Phys Chem Chem Phys 21:1682–1688PubMedGoogle Scholar
  23. Flynn KR, Sutti A, Martin LL, Leigh Ackland M, Torriero AAJ (2018) Critical effects of polar fluorescent probes on the interaction of DHA with POPC supported lipid bilayers. Biochim Biophys Acta BBA 1860:1135–1142Google Scholar
  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) J., Fox, DJ, 2009. Gaussian 09, Re vision B. 01. Wallingford CTGoogle Scholar
  25. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1082PubMedPubMedCentralGoogle Scholar
  26. Guo L, Har JY, Sankaran J, Hong Y, Kannan B, Wohland T (2008) Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. ChemPhysChem 9:721–728PubMedGoogle Scholar
  27. Heller H, Schaefer M, Schulten K (1993) Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase. J Phys Chem 97:8343–8360Google Scholar
  28. Ileri Ercan N, Stroeve P, Tringe JW, Faller R (2018) Molecular dynamics modeling of methylene blue–DOPC lipid bilayer interactions. Langmuir 34:4314–4323PubMedGoogle Scholar
  29. Jämbeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948PubMedPubMedCentralGoogle Scholar
  30. Johnson I, Spence MTZ (eds) (2010) Molecular probes handbook, a guide to fluorescent probes and labeling technologies, 11th Edition, 11th edn. Life Technologies, Carlsbad, CaliforniaGoogle Scholar
  31. Juhasz J, Davis JH, Sharom FJ (2010) Fluorescent probe partitioning in giant unilamellar vesicles of “lipid raft” mixtures. Biochem J 430:415–423PubMedGoogle Scholar
  32. Kachel K, Asuncion-Punzalan E, London E (1998) The location of fluorescence probes with charged groups in model membranes. Biochim Biophys Acta BBA 1374:63–76PubMedGoogle Scholar
  33. Kahya N, Schwille P (2006) How phospholipid-cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy. J Fluoresc 16:671–678PubMedGoogle Scholar
  34. Klauda JB, Brooks BR, Pastor RW (2006) Dynamical motions of lipids and a finite size effect in simulations of bilayers. J Chem Phys 125:144710PubMedPubMedCentralGoogle Scholar
  35. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843PubMedPubMedCentralGoogle Scholar
  36. Klymchenko AS, Kreder R (2014) Fluorescent probes for lipid rafts: from model membranes to living cells. Chem Biol 21:97–113PubMedGoogle Scholar
  37. Koenig M, Storti B, Bizzarri R, Guldi DM, Brancato G, Bottari G (2016) A fluorescent molecular rotor showing vapochromism, aggregation-induced emission, and environmental sensing in living cells. J Mater Chem C 4:3018–3027Google Scholar
  38. Kucerka N, Tristram-Nagle S, Nagle J (2005) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202PubMedGoogle Scholar
  39. Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95:2356–2367PubMedPubMedCentralGoogle Scholar
  40. Kusumi A, Shirai YM, Koyama-Honda I, Suzuki KGN, Fujiwara TK (2010) Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett 584:1814–1823PubMedGoogle Scholar
  41. Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK (2014) Tracking single molecules at work in living cells. Nat Chem Biol 10:524–532PubMedGoogle Scholar
  42. Kyrychenko A (2010) A molecular dynamics model of rhodamine-labeled phospholipid incorporated into a lipid bilayer. Chem Phys Lett 485:95–99Google Scholar
  43. Lewis RNAH, Sykes BD, McElhaney RN (1988) Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologs of oleic acid: differential scanning calorimetric and phosphorus-31 NMR spectroscopic studies.  https://doi.org/10.1021/bi00403a007. https://pubs.acs.org/doi/abs/10.1021/bi00403a007. Accessed 28 Mar 2019PubMedGoogle Scholar
  44. Lindblom G, Orädd G (2009) Lipid lateral diffusion and membrane heterogeneity. Biochim Biophys Acta BBA 1788:234–244PubMedGoogle Scholar
  45. Liu Y, Nagle JF (2004) Diffuse scattering provides material parameters and electron density profiles of biomembranes. Phys Rev E 69:040901Google Scholar
  46. Loura LMS, Prates Ramalho JP (2009) Fluorescent membrane probes’ behavior in lipid bilayers: insights from molecular dynamics simulations. Biophys Rev 1:141PubMedPubMedCentralGoogle Scholar
  47. Loura LMS, Ramalho JPP (2011) Recent developments in molecular dynamics simulations of fluorescent membrane probes. Molecules 16:5437–5452PubMedPubMedCentralGoogle Scholar
  48. Luo Y, Roux B (2010) Simulation of osmotic pressure in concentrated aqueous salt solutions. J Phys Chem Lett 1:183–189Google Scholar
  49. Macchi S, Nifosì R, Signore G, Pietro SD, Boccardi C, D’Autilia F, Beltram F, Cardarelli F (2017) Self-aggregation propensity of the Tat peptide revealed by UV-Vis, NMR and MD analyses. Phys Chem Chem Phys 19:23910–23914PubMedGoogle Scholar
  50. Macchiagodena M, Del Frate G, Brancato G, Chandramouli B, Mancini G, Barone V (2017) Computational study of DPAP molecular rotor in various environments: from force field development to molecular dynamics simulations and spectroscopic calculations. Phys Chem Chem Phys PCCP 19:30590–30602PubMedGoogle Scholar
  51. Macháň R, Hof M (2010) Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim Biophys Acta BBA 1798:1377–1391PubMedGoogle Scholar
  52. Mashl RJ, Scott HL, Subramaniam S, Jakobsson E (2001) Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys J 81:3005–3015PubMedPubMedCentralGoogle Scholar
  53. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327PubMedPubMedCentralGoogle Scholar
  54. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta BBA 1469:159–195PubMedGoogle Scholar
  55. Nitschke WK, Vequi-Suplicy CC, Coutinho K, Stassen H (2012) Molecular dynamics investigations of PRODAN in a DLPC bilayer. J Phys Chem B 116:2713–2721PubMedGoogle Scholar
  56. Pan J, Tristram-Nagle S, Kučerka N, Nagle JF (2008) Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophys J 94:117–124PubMedGoogle Scholar
  57. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedGoogle Scholar
  58. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedPubMedCentralGoogle Scholar
  59. Polat BE, Lin S, Mendenhall JD, VanVeller B, Langer R, Blankschtein D (2011) Experimental and molecular dynamics investigation into the amphiphilic nature of sulforhodamine B. J Phys Chem B 115:1394–1402PubMedPubMedCentralGoogle Scholar
  60. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinform Oxf Engl 29:845–854Google Scholar
  61. Reddy AS, Warshaviak DT, Chachisvilis M (2012) Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochim Biophys Acta 1818:2271–2281PubMedPubMedCentralGoogle Scholar
  62. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341Google Scholar
  63. Schlebach JP, Barrett PJ, Day CA, Kim JH, Kenworthy AK, Sanders CR (2016) Topologically diverse human membrane proteins partition to liquid-disordered domains in phase-separated lipid vesicles. Biochemistry 55:985–988PubMedPubMedCentralGoogle Scholar
  64. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572Google Scholar
  65. Siu SWI, Vácha R, Jungwirth P, Böckmann RA (2008) Biomolecular simulations of membranes: physical properties from different force fields. J Chem Phys 128:125103PubMedGoogle Scholar
  66. Skaug MJ, Longo ML, Faller R (2009) Computational studies of Texas Red − 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine—Model building and applications. J Phys Chem B 113:8758–8766PubMedGoogle Scholar
  67. Skaug MJ, Longo ML, Faller R (2011) The impact of Texas Red on lipid bilayer properties. J Phys Chem B 115:8500–8505PubMedGoogle Scholar
  68. Stachura SS, Malajczuk CJ, Kuprusevicius E, Mancera RL (2019) Influence of bilayer size and number in multi-bilayer DOPC simulations at full and low hydration. Langmuir 35:2399–2411PubMedGoogle Scholar
  69. Vácha R, Siu SWI, Petrov M, Böckmann RA, Barucha-Kraszewska J, Jurkiewicz P, Hof M, Berkowitz ML, Jungwirth P (2009) Effects of alkali cations and halide anions on the DOPC lipid membrane. J Phys Chem A 113:7235–7243PubMedGoogle Scholar
  70. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690PubMedPubMedCentralGoogle Scholar
  71. Venable RM, Luo Y, Gawrisch K, Roux B, Pastor RW (2013) Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. J Phys Chem B 117:10183–10192PubMedGoogle Scholar
  72. Venable RM, Ingólfsson HI, Lerner MG, Perrin BS, Camley BA, Marrink SJ, Brown FLH, Pastor RW (2017) Lipid and peptide diffusion in bilayers: the Saffman-Delbrück model and periodic boundary conditions. J Phys Chem B 121:3443–3457PubMedPubMedCentralGoogle Scholar
  73. Vermeer LS, de Groot BL, Réat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J EBJ 36:919–931PubMedGoogle Scholar
  74. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174PubMedPubMedCentralGoogle Scholar
  75. Warschawski DE, Devaux PF (2005) Order parameters of unsaturated phospholipids in membranes and the effect of cholesterol: a 1H–13C solid-state NMR study at natural abundance. Eur Biophys J 34:987–996PubMedGoogle Scholar
  76. Woodward X, Stimpson EE, Kelly CV (2018) Single-lipid tracking on nanoscale membrane buds: the effects of curvature on lipid diffusion and sorting. Biochim Biophys Acta BBA 1860:2064–2075Google Scholar
  77. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Istituto Nazionale di Fisica NuclearePisaItaly
  3. 3.Università di Pisa, Dipartimento di Ingegneria Civile ed IndustrialePisaItaly

Personalised recommendations