Advertisement

The Journal of Membrane Biology

, Volume 252, Issue 4–5, pp 273–292 | Cite as

The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins

  • Rajeswari Appadurai
  • Vladimir N. Uversky
  • Anand SrivastavaEmail author
Article
Part of the following topical collections:
  1. Membrane and Receptor Dynamics

Abstract

The intrinsically disordered proteins and protein regions (IDPs/IDPRs) do not have unique structures, but are known to be functionally important and their conformational flexibility and structural plasticity have engendered a paradigmatic shift in the classical sequence–structure–function maxim. Fundamental understanding in this field has significantly evolved since the discovery of this class of proteins about 25 years ago. Though the IDPRs of transmembrane proteins (TMP-IDPRs) comply with the broad definition of typical IDPs and IDPRs found in water-soluble globular proteins, much less is explored and known about them. In this review, we assimilate the key emerging biophysical principles from the limited studies on TMP-IDPRs and provide several context-specific biological examples to highlight the ubiquitous nature of TMP-IDPRs and their functional importance in cellular functions. Besides providing a spectrum of insights from sequence to structural disorder and functions, we also review the challenges and methodological advances in studying the structure–function relationship of TMP-IDPRs. We also lay stress upon the importance of an integrative framework, where ensemble-averaged (and mostly low-resolution) data from multiple experiments can be faithfully integrated with modelling techniques such as advanced sampling, coarse-graining, and free energy minimization methods for a high-fidelity characterization of TMP-IDPRs. We close the review by providing futuristic perspective with suggestions on how we could use the ideas and methods from the exciting field of protein engineering in conjunction with integrative modelling framework to advance the IDPR field and harness the sequence–disorder–function paradigm towards functional design of proteins.

Keywords

Intrinsically disordered regions Transmembrane proteins Integrative modelling Protein design 

Notes

Acknowledgements

R.A. and A.S. would like to thank Krishnakanth Baratam for discussions and insights on integrative structural modelling aspects of IDPRs. A.S. thanks the funding from the Ministry of Human Resource Development of India and the early career grant from the Department of Science and Technology of India (DST-India). R.A. thanks the DST-India for her national postdoctoral fellowship. This research is also supported by the Department of Biotechnology, Government of India in the form of IISc-DBT partnership programme. Support from FIST program sponsored by the Department of Science and Technology and UGC, India – Centre for Advanced Studies and Ministry of Human Resource Development, India is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

References

  1. Al-Jiffri OH, Al-Sharif FM, Al-Jiffri EH, Uversky VN (2016) Intrinsic disorder in biomarkers of insulin resistance, hypoadiponectinemia, and endothelial dysfunction among the type 2 diabetic patients. Intrinsically Disord Proteins 4:e1171278PubMedPubMedCentralGoogle Scholar
  2. Allison JR, Rivers RC, Christodoulou JC, Vendruscolo M, Dobson CM (2014) A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein. J Am Chem Soc. 53:7170–7183Google Scholar
  3. Almén MS, Nordström KJV, Fredriksson R, Schiöth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:1–14Google Scholar
  4. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE (2013) Architecture and membrane interactions of the EGF receptor. Cell 152:557–569PubMedPubMedCentralGoogle Scholar
  5. Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD (2015) Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519:106–109PubMedGoogle Scholar
  6. Baker M (2011) Protein engineering: navigating between chance and reason. Nat Methods 8:623–626PubMedGoogle Scholar
  7. Baker JMR, Hudson RP, Kanelis V, Choy W, Thibodeau PH, Thomas PJ, Forman-kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745PubMedPubMedCentralGoogle Scholar
  8. Balázs A, Csizmok V, Buday L, Rakács M, Kiss R, Bokor M, Udupa R, Tompa K, Tompa P (2009) High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1. FEBS J 276:3744–3756PubMedGoogle Scholar
  9. Banjade S, Rosen MK (2014) Phase transitions of multivalent proteins can promote clustering of membrane receptors. Elife 3:e04123PubMedCentralGoogle Scholar
  10. Bellot G, Granier S, Bourguet W, Seyer R, Rahmeh R, Mouillac B, Pascal R, Mendre C, Déméné H (2009) Structure of the third intracellular loop of the vasopressin V2 receptor and conformational changes upon binding to gC1qR. J Mol Biol 388:491–507PubMedGoogle Scholar
  11. Berlow RB, Dyson HJ, Wright PE (2015) Functional advantages of dynamic protein disorder. FEBS Lett 589:2433–2440PubMedPubMedCentralGoogle Scholar
  12. Bernard-Pierrot I, Brams A, Dunois-Lardé C, Caillault A, Medina SG, Cappellen D, Graff G, Thiery JP, Chopin D, Ricol D (2005) Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 27:740–747PubMedGoogle Scholar
  13. Best RB (2017) Computational and theoretical advances in studies of intrinsically disordered proteins. Curr Opin Struct Biol 42:147–154PubMedGoogle Scholar
  14. Best RB, Zheng W, Mittal J (2014) Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput. 25:5113–5124Google Scholar
  15. Bienz M (2014) Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem Sci 39:487–495PubMedGoogle Scholar
  16. Björling A, Niebling S, Marcellini M, Van Der Spoel D, Westenhoff S (2015) Deciphering solution scattering data with experimentally guided molecular dynamics simulations. J Chem Theory Comput 11:780–787PubMedPubMedCentralGoogle Scholar
  17. Boguth CA, Singh P, Huang C, Tesmer JJ (2010) Molecular basis for activation of G protein-coupled receptor kinases. EMBO J 29:3249–3259PubMedPubMedCentralGoogle Scholar
  18. Boomsma W, Ferkinghoff-Borg J, Lindorff-Larsen K (2014) Combining experiments and simulations using the maximum entropy principle. PLoS Comput Biol 10:e1003406PubMedPubMedCentralGoogle Scholar
  19. Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61PubMedPubMedCentralGoogle Scholar
  20. Bottar S, Lindorff-Larsen K (2018) Biophysical experiments and biomolecular simulations: a perfect match? Science 361:355–360Google Scholar
  21. Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A, Gilmore JM, Xu C, Dimaio F, Pereira JH, Sankaran B, Seelig G, Zwart PH, Baker D (2016) De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352:680–687PubMedPubMedCentralGoogle Scholar
  22. Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-zahrani A, Thomas PJ, Frizzell RA, Ford RC, Forman-Kay JD (2013) Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra-and intermolecular interactions. Proc Natl Acad Sci USA 110:E4427–E4436PubMedGoogle Scholar
  23. Brown CJ, Johnson AK, Dunker AK, Daughdrill GW (2011) Evolution and disorder. Curr Opin Struct Biol 21:441–446PubMedPubMedCentralGoogle Scholar
  24. Buday L, Tompa P (2010) Functional classification of scaffold proteins and related molecules. FEBS J 277:4348–4355PubMedGoogle Scholar
  25. Bugge K, Papaleo E, Haxholm GW, Hopper JTS, Robinson CV, Olsen JG, Lindorff-Larsen K, Kragelund BB (2016) A combined computational and structural model of the full-length human prolactin receptor. Nat Commun 7:1–11Google Scholar
  26. Buljan M, Chalancon G, Dunker AK, Bateman A, Balaji S, Fuxreiter M, Babu MM (2013) Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr Opin Struct Biol 23:443–450PubMedGoogle Scholar
  27. Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158:1263–1275PubMedPubMedCentralGoogle Scholar
  28. Burgar HR, Burns HD, Elsden JL, Lalioti MD, Heath JK (2002) Association of the signaling adaptor FRS2 with fibroblast growth factor receptor 1 (Fgfr1) is mediated by alternative splicing of the juxtamembrane domain. J Biol Chem 277:4018–4023PubMedGoogle Scholar
  29. Bürgi J, Xue B, Uversky VN, Van Der Goot FG (2016) Intrinsic disorder in transmembrane proteins: roles in signaling and topology prediction. PLoS ONE 11:1–21Google Scholar
  30. Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC (2015) Intrinsically disordered proteins drive membrane curvature. Nat Commun 6:1–11Google Scholar
  31. Cabanos C, Wang M, Han X, Hansen SB (2017) A soluble fluorescent binding assay reveals PIP 2 antagonism of TREK-1 channels. Cell Rep 20:1287–1294PubMedPubMedCentralGoogle Scholar
  32. Cavalli A, Camilloni C, Vendruscolo M (2013) Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. J Chem Phys 138:1–5Google Scholar
  33. Chakraborty AK, Weiss A (2014) Insights into the initiation of TCR signaling. Nat Immunol 15:798–807PubMedPubMedCentralGoogle Scholar
  34. Chatterjee D, Zhiping LL, Tan SM, Bhattacharjya S (2018) NMR structure, dynamics and interactions of the integrin β2 cytoplasmic tail with filamin domain IgFLNa21. Sci Rep 8:5490PubMedPubMedCentralGoogle Scholar
  35. Chen H-L, Chang P-S, Hsu H-C, Lee J-H, Ni Y-H, Hsu H, Jeng Y-M, Chang M-H (2001) Progressive familial intrahepatic cholestasis with high γ-glutamyltranspeptidase levels in Taiwanese infants: role of MDR3 gene defect? Pediatr Res 50:50–55PubMedGoogle Scholar
  36. Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45:10448–10460PubMedGoogle Scholar
  37. Choi UB, Kazi R, Stenzoski N, Wollmuth LP, Uversky VN, Bowen ME (2013) Modulating the intrinsic disorder in the cytoplasmic domain alters the biological activity of the N-methyl-D-aspartate-sensitive glutamate receptor. J Biol Chem 288:22506–22515PubMedPubMedCentralGoogle Scholar
  38. Chung KY, Rasmussen SGF, Liu T, Li S, Devree BT, Chae PS, Calinski D, Kobilka BK, Woods VL, Sunahara RK (2011) Conformational changes in the G protein Gs induced by the β2adrenergic receptor. Nature 477:611–617PubMedPubMedCentralGoogle Scholar
  39. Clister T, Mehta S, Zhang J (2015) Single-cell analysis of G-protein signal transduction. J Biol Chem 290:6681–6688PubMedPubMedCentralGoogle Scholar
  40. Cortese MS, Uversky VN, Keith Dunker A (2008) Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol 98:85–106PubMedPubMedCentralGoogle Scholar
  41. Darling AL, Uversky VN (2017) Intrinsic disorder in proteins with pathogenic repeat expansions. Molecules 22:2027PubMedCentralGoogle Scholar
  42. Darling AL, Liu Y, Oldfield CJ, Uversky VN (2018) Intrinsically disordered proteome of human membrane-less organelles. Proteomics 18:1700193Google Scholar
  43. De Biasio A, Guarnaccia C, Popovic M, Uversky VN, Pintar A, Pongor S (2008) Prevalence of intrinsic disorder in the intracellular region of human single-pass type I proteins: the case of the notch ligand Delta-4. J Proteome Res 7:2496–2506PubMedPubMedCentralGoogle Scholar
  44. De Vree JML, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, Aten J, Deleuze J-F, Desrochers M, Burdelski M, Bernard O (1998) Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA 95:282–287PubMedGoogle Scholar
  45. Degiorgio D, Colombo C, Seia M, Porcaro L, Costantino L, Zazzeron L, Bordo D, Coviello DA (2007) Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3). Eur J Hum Genet 15:1230PubMedGoogle Scholar
  46. Deng W, Cho S, Su PC, Berger BW, Li R (2014) Membrane-enabled dimerization of the intrinsically disordered cytoplasmic domain of ADAM10. Proc Natl Acad Sci USA 111:15987–15992PubMedGoogle Scholar
  47. Dill KA, Maccallum JL (2013) The protein-folding problem, 50 years on. Science 338:1042–1047Google Scholar
  48. Dobson L, Reményi I, Tusnády GE (2015) The human transmembrane proteome. Biol Direct 10:1–18Google Scholar
  49. Dosztányi Z, Chen J, Dunker AK, Simon I, Tompa P (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5:2985–2995PubMedGoogle Scholar
  50. Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:937–950PubMedPubMedCentralGoogle Scholar
  51. Du Z, Uversky VN (2017) A comprehensive survey of the roles of highly disordered proteins in type 2 Diabetes. Int J Mol Sci 18:2010PubMedCentralGoogle Scholar
  52. Dunker AK, Gough J (2011) Sequences and topology: intrinsic disorder in the evolving universe of protein structure. Curr Opin Struct Biol 21:379–381PubMedGoogle Scholar
  53. Dunker K, Obradovic Z (2001) The protein trinity-linking function and disorder. Nat Biotechnol. 19:805–806PubMedGoogle Scholar
  54. Dunker AK, Romero P, Obradovic Z, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform 11:161–171Google Scholar
  55. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59PubMedGoogle Scholar
  56. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148PubMedGoogle Scholar
  57. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764PubMedGoogle Scholar
  58. Dunker AK, Bondos SE, Huang F, Oldfield CJ (2015) Intrinsically disordered proteins and multicellular organisms. Semin Cell Dev Biol 37:44–55PubMedGoogle Scholar
  59. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60PubMedGoogle Scholar
  60. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208PubMedGoogle Scholar
  61. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30PubMedPubMedCentralGoogle Scholar
  62. Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y, Pelton JG, Shan Y, Shaw DE, Wemmer DE (2013) Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152:543–556PubMedPubMedCentralGoogle Scholar
  63. Fantl WJ, Johnson DE, Williams LT (1993) Signalling by receptor tyrosine kinases. Annu Rev Biochem 62:453–481PubMedGoogle Scholar
  64. Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang C-Y, Moritz RL (2012) The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res 12:162–171PubMedPubMedCentralGoogle Scholar
  65. Farrah T, Deutsch EW, Omenn GS, Sun Z, Watts JD, Yamamoto T, Shteynberg D, Harris MM, Moritz RL (2013) State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology-and disease-driven Human Proteome Project. J Proteome Res 13:60–75PubMedPubMedCentralGoogle Scholar
  66. Fealey ME, Mahling R, Rice AM, Dunleavy K, Kobany SEG, Lohese KJ, Horn B, Hinderliter A (2016) Synaptotagmin is intrinsically disordered region interacts with synaptic vesicle lipids and exerts allosteric control over C2A. Biochemistry 55:2914–2926PubMedGoogle Scholar
  67. Fisher CK, Huang A, Stultz CM (2010) Modeling intrinsically disordered proteins with bayesian statistics. J Am Chem Soc 132:14919–14927PubMedPubMedCentralGoogle Scholar
  68. Flock T, Weatheritt RJ, Latysheva NS, Babu MM (2014) Controlling entropy to tune the functions of intrinsically disordered regions. Curr Opin Struct Biol 26:62–72PubMedGoogle Scholar
  69. Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedGoogle Scholar
  70. Gallo LH, Nelson KN, Meyer AN, Donoghue DJ (2015) Functions of fibroblast growth factor receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev 26:425–449PubMedGoogle Scholar
  71. Ghatak S, Banerjee A, Sikdar SK (2015) Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J Physiol 594:59–81PubMedPubMedCentralGoogle Scholar
  72. Gibbs EB, Cook EC, Showalter SA (2017) Application of NMR to studies of intrinsically disordered proteins. Arch Biochem Biophys 628:57–70PubMedGoogle Scholar
  73. Granata D, Camilloni C, Vendruscolo M, Laio A (2013) Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proc Natl Acad Sci USA 110:6817–6822PubMedGoogle Scholar
  74. Grecco HE, Schmick M, Bastiaens PI (2011) Signaling from the living plasma membrane. Cell 144:897–909PubMedGoogle Scholar
  75. Grosely R, Kopanic JL, Nabors S, Kieken F, Spagnol G, Al-mugotir M, Zach S, Sorgen PL (2013) Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered Connexin43 carboxyl-terminal domain. J Biol Chem 288:24857–24870PubMedPubMedCentralGoogle Scholar
  76. Guharoy M, Szabo B, Martos SC, Kosol S, Tompa P (2013) Intrinsic structural disorder in cytoskeletal proteins. Cytoskeleton 70:550–571PubMedGoogle Scholar
  77. Haxholm GW, Nikolajsen LF, Olsen JG, Fredsted J, Larsen FH, Goffin V, Pedersen SF, Brooks AJ, Waters MJ, Kragelund BB (2015) Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes. Biochem J 468:495–506PubMedGoogle Scholar
  78. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:0890–0901Google Scholar
  79. Hellmich UA, Gaudet R (2014) High-resolution views of TRPV1 and their implications for the TRP channel superfamily. Handb Exp Pharmacol 223:991–1004PubMedPubMedCentralGoogle Scholar
  80. Honoré E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261PubMedGoogle Scholar
  81. Honoré E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J 21:2968–2976PubMedPubMedCentralGoogle Scholar
  82. Hosseinzadeh P, Marshall NM, Chacón KN, Yu Y, Nilges MJ, Yee S (2016) Design of a single protein that spans the entire 2-V range of physiological redox potentials. Proc Natl Acad Sci USA 113:262–267PubMedGoogle Scholar
  83. Houtman JCD, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B, Appella E, Schuck P, Samelson LE (2006) Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13:798PubMedGoogle Scholar
  84. Hsu W-L, Oldfield C, Jingwei Meng FH, Xue B, Uversky VN, Pedro Romero AKD (2012) Intrinsic protein disorder and protein–protein interactions. Pac Symp Biocomput 2012:116–127Google Scholar
  85. Hsu W-L, Oldfield CJ, Xue B, Meng J, Huang F, Romero P, Uversky VN, Dunker AK (2013) Exploring the binding diversity of intrinsically disordered proteins involved in one-to-many binding. Protein Sci 22:258–273PubMedGoogle Scholar
  86. Hu G, Wu Z, Uversky NV, Kurgan L (2017) Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci 18:2761PubMedCentralGoogle Scholar
  87. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL, Grubmüller H, MacKerell AD (2016a) CHARMM36 m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73PubMedPubMedCentralGoogle Scholar
  88. Huang P-S, Boyken SE, Baker D (2016b) The coming of age of de novo protein design. Nature 537:320–327PubMedGoogle Scholar
  89. Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584PubMedGoogle Scholar
  90. Iakoucheva LM, Radivojac P, Brown CJ, Connor TRO, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049PubMedPubMedCentralGoogle Scholar
  91. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M (2001) Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci USA 98:7182–7187PubMedGoogle Scholar
  92. Jacquemin E, Bernard O, Hadchouel M, Cresteil D, De Vree JML, Paul M, Elferink RPJO, Bosma PJ, Sokal EM, Sturm E (2001) The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 120:1448–1458PubMedGoogle Scholar
  93. Jakob U, Kriwacki R, Uversky VN (2014) Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 114:6779–6805PubMedPubMedCentralGoogle Scholar
  94. Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–1307PubMedPubMedCentralGoogle Scholar
  95. Kasahara K, Shiina M, Higo J, Ogata K, Nakamura H (2018) Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state. Nucleic Acids Res 46:2243–2251PubMedPubMedCentralGoogle Scholar
  96. Keegan AD, Paul WE (1992) Multichain immune recognition receptors: similarities in structure and signaling pathways. Immunol Today 13:63–68PubMedGoogle Scholar
  97. Keppel TR, Sarpong K, Murray EM, Monsey J, Zhu J, Bose R (2017) Biophysical evidence for intrinsic disorder in the C-terminal tails of the epidermal growth factor receptor (EGFR) and HER3 receptor tyrosine kinases. J Biol Chem 292:597–610PubMedGoogle Scholar
  98. Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S (2014) A draft map of the human proteome. Nature 509:575–581PubMedPubMedCentralGoogle Scholar
  99. Kimanius D, Pettersson I, Schluckebier G, Lindahl E, Andersson M (2015) SAXS-guided metadynamics. J Chem Theory Comput 11:3491–3498PubMedGoogle Scholar
  100. Kjaergaard M, Kragelund BB (2017) Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 74:3205–3224PubMedGoogle Scholar
  101. Kjaergaard M, Nørholm A, Hendus-altenburger R, Pedersen SF, Poulsen FM, Kragelund BB (2010) Temperature-dependent structural changes in intrinsically disordered proteins: formation of α-helices or loss of polyproline II? Protein Sci 19:1555–1564PubMedPubMedCentralGoogle Scholar
  102. Klemm JD, Schreiber SL, Crabtree GR (1998) Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 16:569–592PubMedGoogle Scholar
  103. Kloda A, Martinac B, Adams DJ (2007) Polymodal regulation of NMDA receptor channels. Channels 1:334–343PubMedGoogle Scholar
  104. Kozma D, Simon I, Tusnády GE (2013) PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:524–529Google Scholar
  105. Kulkarni P, Uversky NV (2017) Cancer/testis antigens: “smart” biomarkers for diagnosis and prognosis of prostate and other cancers. Int J Mol Sci 18:740PubMedCentralGoogle Scholar
  106. Kulkarni P, Uversky VN (2018) Intrinsically disordered proteins: the dark horse of the dark proteome. Proteomics 18:1800061Google Scholar
  107. Kulkarni P, Jolly MK, Jia D, Mooney SM, Bhargava A, Kagohara LT, Chen Y, Hao P, He Y, Veltri RW, Grishaev A, Weninger K, Levine H, Orban J (2017) Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proc Natl Acad Sci USA 114:E2644–E2653PubMedGoogle Scholar
  108. Kumagai PS, DeMarco R, Lopes JLS (2017) Advantages of synchrotron radiation circular dichroism spectroscopy to study intrinsically disordered proteins. Eur Biophys J 46:599–606PubMedGoogle Scholar
  109. Künze G, Barré P, Scheidt HA, Thomas L, Eliezer D, Huster D (2012) Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. BBA Biomembr 1818:2302–2313Google Scholar
  110. Kurotani A, Sakurai T (2015) In Silico analysis of correlations between protein disorder and post-translational modifications in algae. Int J Mol Sci 16:19812–19835PubMedPubMedCentralGoogle Scholar
  111. Kurotani A, Tokmakov AA, Kuroda Y, Fukami Y, Shinozaki K, Sakurai T (2014) Sequence analysis correlations between predicted protein disorder and post-translational modifications in plants. Bioinformatics 30:1095–1103PubMedPubMedCentralGoogle Scholar
  112. Kwon A, John M, Ruan Z, Kannan N (2018) Coupled regulation by the juxtamembrane and sterile α motif (SAM) linker is a hallmark of ephrin tyrosine kinase evolution. J Biol Chem 293:5102–5116PubMedPubMedCentralGoogle Scholar
  113. Landau KS, Na I, Schenck RO, Uversky VN (2016) Unfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer. Asian J Androl 18:662–672PubMedPubMedCentralGoogle Scholar
  114. Latysheva NS, Flock T, Weatheritt RJ, Chavali S, Babu MM (2015) How do disordered regions achieve comparable functions to structured domains? Protein Sci 24:909–922PubMedPubMedCentralGoogle Scholar
  115. Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E (2000) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491PubMedPubMedCentralGoogle Scholar
  116. LeBlanc SJ, Kulkarni P, Weninger KR (2018) Single Molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8(4):140PubMedCentralGoogle Scholar
  117. Legate KR, Fassler R (2009) Mechanisms that regulate adaptor binding to -integrin cytoplasmic tails. J Cell Sci 122:187–198PubMedGoogle Scholar
  118. Lemke EA (2016) The multiple faces of disordered nucleoporins. J Mol Biol 428:2011–2024PubMedGoogle Scholar
  119. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134PubMedPubMedCentralGoogle Scholar
  120. Li J, James ZM, Dong X, Karim CB, Thomas DD (2012a) Structural and functional dynamics of an integral membrane protein complex modulated by lipid headgroup charge. JMolBiol 418:379–389Google Scholar
  121. Li P, Banjade S, Cheng H-C, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF (2012b) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340PubMedPubMedCentralGoogle Scholar
  122. Lin H-Y, Xu J, Ischenko I, Ornitz DM, Halegoua S, Hayman MJ (1998) Identification of the cytoplasmic regions of fibroblast growth factor (FGF) receptor 1 which play important roles in induction of neurite outgrowth in PC12 cells by FGF-1. Mol Cell Biol 18:3762–3770PubMedPubMedCentralGoogle Scholar
  123. Linggi B, Carpenter G (2006) ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol 16:649–656PubMedGoogle Scholar
  124. Liu Z, Huang Y (2014) Advantages of proteins being disordered. Protein Sci 23:539–550PubMedPubMedCentralGoogle Scholar
  125. Lluis MW, Godfroy JI, Yin H (2013) Protein engineering methods applied to membrane protein targets. Protein Eng Des Sel 26:91–100PubMedGoogle Scholar
  126. Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, Baker D (2018) Accurate computational design of multipass transmembrane proteins. Science. 359:1042–1046PubMedGoogle Scholar
  127. MacCallum JL, Perez A, Dill KA (2015) Determining protein structures by combining semireliable data with atomistic physical models by Bayesian inference. Proc Natl Acad Sci USA 112:6985–6990PubMedGoogle Scholar
  128. Magidovich E, Fleishman SJ, Yifrach O (2006) Intrinsically disordered C-terminal segments of voltage-activated potassium channels: a possible fishing rod-like mechanism for channel binding to scaffold proteins. Bioinformatics 22:1546–1550PubMedGoogle Scholar
  129. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696PubMedGoogle Scholar
  130. Malaney P, Uversky VN, Davé V (2017) PTEN proteoforms in biology and disease. Cell Mol Life Sci 74:2783–2794PubMedGoogle Scholar
  131. Malik RU, Ritt M, DeVree BT, Neubig RR, Sunahara RK, Sivaramakrishnan S (2013) Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells. J Biol Chem 288:17167–17178PubMedPubMedCentralGoogle Scholar
  132. Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A (2016) Principles and overview of sampling methods for modeling macromolecular structure and dynamics. PLoS Comput Biol 12:1–70Google Scholar
  133. Mayzel M, Lengqvist J, Orekhov VY, Rosenlo J (2014) Tyrosine phosphorylation within the intrinsically disordered cytosolic domains of the B-Cell receptor: an NMR-based structural analysis. PLoS ONE 9:e96199PubMedPubMedCentralGoogle Scholar
  134. McClenaghan C, Schewe M, Aryal P, Carpenter EP, Baukrowitz T, Tucker SJ (2016) Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J Gen Physiol 147:497–505PubMedPubMedCentralGoogle Scholar
  135. Metzger H (1992) Transmembrane signaling: the joy of aggregation. J Immunol 149:1477–1487PubMedGoogle Scholar
  136. Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2009) Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics 10:S12PubMedPubMedCentralGoogle Scholar
  137. Miller P, Kemp PJ, Peers C (2005) Structural requirements for O2 sensing by the human tandem-P domain channel, hTREK1. Biochem Biophys Res Commun 331:1253–1256PubMedGoogle Scholar
  138. Minezaki Y, Homma K, Nishikawa K (2007) Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment. J Mol Biol 368:902–913PubMedGoogle Scholar
  139. Mustafa M, Mirza A, Kannan N (2011) Conformational regulation of the EGFR kinase core by the juxtamembrane and C-terminal tail: a molecular dynamics study. Proteins 79:99–114PubMedGoogle Scholar
  140. Na I, Kong MJ, Straight S, Pinto JR, Uversky VN (2016) Troponins, intrinsic disorder, and cardiomyopathy. Biol Chem 397:731–751PubMedGoogle Scholar
  141. Narasumani M, Harrison PM (2018) Discerning evolutionary trends in post- translational modification and the effect of intrinsic disorder: analysis of methylation, acetylation and ubiquitination sites in human proteins. PLoS Comput Biol 14:e1006349PubMedPubMedCentralGoogle Scholar
  142. Necci M, Quaglia F, Piovesan D, Tabaro F, Mi I, Oldfield CJ et al (2017) DisProt 7. 0 : a major update of the database of ˇ c Radoslav Davidovi c. Nucleic Acids Res. 45:219–227Google Scholar
  143. Nerenberg PS, Jo B, So C, Tripathy A, Head-Gordon T (2012) Optimizing solute-water van der Waals interactions to reproduce solvation free energies. J Phys Chem B 116:4524–4534PubMedGoogle Scholar
  144. Nespoulous C, Rofidal V, Sommerer N, Hem S, Rossignol M (2012) Phosphoproteomic analysis reveals major default phosphorylation sites outside long intrinsically disordered regions of Arabidopsis plasma membrane proteins. Proteome Sci 10:1–11Google Scholar
  145. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Liu CW, Jose J, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of beta 2 -adrenergic receptor activation. Cell 152:532–542PubMedPubMedCentralGoogle Scholar
  146. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584PubMedGoogle Scholar
  147. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1–S1PubMedPubMedCentralGoogle Scholar
  148. Olsson S, Frellsen J, Boomsma W, Mardia KV, Hamelryck T (2013) Inference of structure ensembles of flexible biomolecules from sparse, averaged data. PLoS ONE 8:1–7Google Scholar
  149. Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J, Lax I (2000) FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 20:979–989PubMedPubMedCentralGoogle Scholar
  150. Ortega E (1995) How do multichain immune recognition receptors signal? A structural hypothesis. Mol Immunol 32:941–945PubMedGoogle Scholar
  151. Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J (2014) Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci USA 111:1825–1830PubMedGoogle Scholar
  152. Papaleo E, Camilloni C, Teilum K, Vendruscolo M, Lindorff-larsen K (2018) Molecular dynamics ensemble refinement of the heterogeneous native state of NCBD using chemical shifts and NOEs. Peer J 6:1–24Google Scholar
  153. Papoian GA (2008) Proteins with weakly funneled energy landscapes challenge the classical structure–function paradigm. PNAS 105:14237–14238PubMedGoogle Scholar
  154. Pegan S, Tan J, Huang A, Slesinger PA, Riek R, Choe S (2007) NMR studies of interactions between C-terminal tail of Kir2.1 channel and PDZ1,2 domains of PSD95. Biochemistry 46:5315–5322PubMedGoogle Scholar
  155. Pejaver V, Hsu W-L, Xin F, Dunker AK, Uversky VN, Radivojac P (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23:1077–1093PubMedPubMedCentralGoogle Scholar
  156. Peng WC, Lin X, Torres J (2009) The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues. Protein Sci 18:450–459PubMedPubMedCentralGoogle Scholar
  157. Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol BioSyst 8:1886–1901PubMedGoogle Scholar
  158. Peng Z, Sakai Y, Kurgan L, Sokolowski B, Uversky V (2014) Intrinsic disorder in the BK channel and its interactome. PLoS ONE 9:e94331PubMedPubMedCentralGoogle Scholar
  159. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72:137–151PubMedGoogle Scholar
  160. Perez A, MacCallum JL, Dill KA (2015) Accelerating molecular simulations of proteins using Bayesian inference on weak information. Proc Natl Acad Sci USA 112:11846–11851PubMedGoogle Scholar
  161. Piana S, Donchev AG, Robustelli P, Shaw DE (2015) Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 119:5113–5123PubMedGoogle Scholar
  162. Pitera JW, Chodera JD (2012) On the use of experimental observations to bias simulated ensembles. J Chem Theory Comput 8:3445–3451PubMedGoogle Scholar
  163. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM (2007) Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26:7158PubMedPubMedCentralGoogle Scholar
  164. Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037PubMedGoogle Scholar
  165. Popot J-L, Engelman DM (2016) Membranes do not tell proteins how to fold. Biochemistry 55:5–18PubMedGoogle Scholar
  166. Popovic M, Zlatev V, Hodnik V, Anderluh G, Felli IC, Pongor S, Pintar A (2012) Flexibility of the PDZ-binding motif in the micelle-bound form of Jagged-1 cytoplasmic tail. Biochim Biophys Acta Biomembr 1818:1706–1716Google Scholar
  167. Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł (2019) Targeting cellular trafficking of fibroblast growth factor receptors as a strategy for selective cancer treatment. J Clin Med 8:7Google Scholar
  168. Pryor EE, Wiener MC (2014) A critical evaluation of in silico methods for detection of membrane protein intrinsic disorder. Biophys J 106:1638–1649PubMedPubMedCentralGoogle Scholar
  169. Receveur-Brechot V, Durand D (2012) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 13:55–75PubMedPubMedCentralGoogle Scholar
  170. Receveur-Bréchot V, Bourhis J, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins Struct Funct Bioinform 62:24–45Google Scholar
  171. Reddy PJ, Ray S, Srivastava S (2015) The quest of the human proteome and the missing proteins: digging deeper. Omi J Integr Biol 19:276–282Google Scholar
  172. Reichert MC, Lammert F (2018) ABCB4 gene aberrations in human liver disease: an evolving spectrum. Sem Liver Dis 11:299–307Google Scholar
  173. Reth M (1989) Antigen receptor tail clue. Nature 338:383–384PubMedGoogle Scholar
  174. Rieping W, Habeck M, Nilges M (2005) Inferential structure determination. Science 309:303–306PubMedGoogle Scholar
  175. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci 115:E4758–E4766PubMedGoogle Scholar
  176. Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci USA 103:8390PubMedGoogle Scholar
  177. Sanders CR, Kuhn Hoffmann A, Gray DN, Keyes MH, Ellis CD (2004) French swimwear for membrane proteins. ChemBioChem 5:423–426PubMedGoogle Scholar
  178. Santamaria N, Alhothali M, Alfonso MH, Breydo L, Uversky VN (2017) Intrinsic disorder in proteins involved in amyotrophic lateral sclerosis. Cell Mol Life Sci 74:1297–1318PubMedGoogle Scholar
  179. Sarabipour S, Hristova K (2015) FGFR3 unliganded dimer stabilization by the juxtamembrane domain. J Mol Biol 427:1705–1714PubMedPubMedCentralGoogle Scholar
  180. Schad E, Tompa P, Hegyi H (2012) The relationship between proteome size, structural disorder and organism complexity. Genome Biol 12:R120Google Scholar
  181. Schlüter H, Apweiler R, Holzhütter H-G, Jungblut PR (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 3:11PubMedPubMedCentralGoogle Scholar
  182. Schneider ER, Anderson EO, Gracheva EO, Sviatoslav N (2014) Temperature sensitivity of two-pore (K2P) potassium channels. Curr Top Membr 74:113–133PubMedPubMedCentralGoogle Scholar
  183. Shevchuk R, Hub JS (2017) Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics. PLoS Comput Biol 13:1–27Google Scholar
  184. Showalter SA (2014) Intrinsically disordered proteins: methods for structure and dynamics studies. eMagRes 3:181–190Google Scholar
  185. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng W-C, Staus DP, Hilger D, Uysal S, Huang L, Paduch M, Tripathi-shukla P, Koide A, Koide S (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(137):141Google Scholar
  186. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793PubMedGoogle Scholar
  187. Sigalov AB (2008) Signaling chain homooligomerization (SCHOOL) model. In: Sigalov AB (ed) Multichain immune recognition receptor signaling. Advances in experimental medicine and biology, vol 640. Springer, New York, NYGoogle Scholar
  188. Sigalov AB (2010a) Membrane binding of intrinsically disordered proteins: critical importance of an appropriate membrane model. Self Nonself. 1:129–132PubMedPubMedCentralGoogle Scholar
  189. Sigalov AB (2010b) Protein intrinsic disorder and oligomericity in cell signaling. Mol BioSyst 6:451–461PubMedGoogle Scholar
  190. Sigalov AB (2010c) Unusual biophysics of immune signaling-related intrinsically disordered proteins. Self Nonself 1:271–281PubMedPubMedCentralGoogle Scholar
  191. Sigalov AB (2011) Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. Prog Biophys Mol Biol 106:525–536PubMedGoogle Scholar
  192. Sigalov AB (2012) Interplay between protein order, disorder and oligomericity in receptor signaling. Fuzziness. Springer, New York, pp 50–73Google Scholar
  193. Sigalov AB (2016) Structural biology of intrinsically disordered proteins: revisiting unsolved mysteries. Biochimie 125:112–118PubMedGoogle Scholar
  194. Sigalov AB, Hendricks GM (2009) Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition. Biochem Biophys Res Commun 389:388–393PubMedPubMedCentralGoogle Scholar
  195. Sigalov AB, Uversky VN (2011) Differential occurrence of protein intrinsic disorder in the cytoplasmic signaling domains of cell receptors. Self Nonself. 2:55–72PubMedPubMedCentralGoogle Scholar
  196. Sigalov A, Aivazian D, Stern L (2004) Homooligomerization of the cytoplasmic domain of the T cell receptor ζ chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry 43:2049–2061PubMedGoogle Scholar
  197. Sigalov AB, Aivazian DA, Uversky VN, Stern LJ (2006) Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry 45:15731–15739PubMedPubMedCentralGoogle Scholar
  198. Sigalov AB, Zhuravleva AV, Orekhov VY (2007) Binding of intrinsically disordered proteins is not necessarily accompanied by a structural transition to a folded form. Biochimie 89:419–421PubMedGoogle Scholar
  199. Singleton KL, Roybal KT, Sun Y, Fu G, Gascoigne NRJ, van Oers NSC, Wülfing C (2009) Spatiotemporal patterning during T cell activation is highly diverse. Sci Signal. 2:ra15PubMedPubMedCentralGoogle Scholar
  200. Smith LM, Kelleher NL, Linial M, Goodlett D, Langridge-Smith P, Goo YA, Safford G, Bonilla L, Kruppa G, Zubarev R (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186PubMedPubMedCentralGoogle Scholar
  201. Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324:198–204PubMedPubMedCentralGoogle Scholar
  202. Solan JL, Lampe PD (2005) Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711:154–163PubMedGoogle Scholar
  203. Stanley N, Esteban-Martín S, De Fabritiis G (2015) Progress in studying intrinsically disordered proteins with atomistic simulations. Prog Biophys Mol Biol 119:47–52PubMedGoogle Scholar
  204. Stavropoulos I, Khaldi N, Davey NE, O’Brien K, Martin F, Shields DC (2012) Protein disorder and short conserved motifs in disordered regions are enriched near the cytoplasmic side of single-pass transmembrane proteins. PLoS ONE 7:1–8Google Scholar
  205. Steiner K, Schwab H (2012) Recent advances in rational approaches for enzyme engineering. Comput Struct Biotechnol J. 2:e201209010PubMedPubMedCentralGoogle Scholar
  206. Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–599PubMedPubMedCentralGoogle Scholar
  207. Sutton EJ, Bradshaw RT, Orr CM, Frend B, Cragg MS, Tews I, Essex JW (2018) Article evaluating anti-CD32b F (ab) conformation using molecular dynamics and small-angle X-ray scattering. Biophys J 115:289–299PubMedPubMedCentralGoogle Scholar
  208. Tantos A, Han K-H, Tompa P (2012) Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 348:457–465PubMedGoogle Scholar
  209. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74PubMedPubMedCentralGoogle Scholar
  210. Thinn AMM, Wang Z, Zhu J (2018) The membrane-distal regions of integrin α cytoplasmic domains contribute differently to integrin inside-out activation. Sci Rep 8:1–17Google Scholar
  211. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516PubMedGoogle Scholar
  212. Tompa P (2016) The principle of conformational signaling. Chem Soc Rev 45:4252–4284PubMedGoogle Scholar
  213. Tompa P, Schad E, Tantos A, Kalmar L (2015) Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 35:49–59PubMedGoogle Scholar
  214. Turoverov KK, Kuznetsova IM, Uversky VN (2010) The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol 102:73–84PubMedPubMedCentralGoogle Scholar
  215. Tusnády GE, Dobson L, Tompa P (2015) Disordered regions in transmembrane proteins. Biochim Biophys Acta Biomembr 1848:2839–2848Google Scholar
  216. Uhlén M, Björling E, Agaton C, Szigyarto K, Amini B, Andersen E, Andersson A-C, Angelidou P, Asplund A, Asplund C (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 4:1920–1932PubMedGoogle Scholar
  217. Uings IJ, Farrow SN (2000) Cell receptors and cell signalling. J Clin Pathol Mol Pathol 53:295–299Google Scholar
  218. Uversky VN (2002a) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756PubMedPubMedCentralGoogle Scholar
  219. Uversky VN (2002b) What does it mean to be natively unfolded? Eur J Biochem 269:2–12PubMedGoogle Scholar
  220. Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding–misfolding–nonfolding cross-roads : which way to go? Cell Mol Life Sci 60:1852–1871PubMedGoogle Scholar
  221. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238Google Scholar
  222. Uversky VN (2010a) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol. 2010:568068PubMedGoogle Scholar
  223. Uversky VN (2010b) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D2 concept. Expert Rev Proteomics 7:543–564PubMedPubMedCentralGoogle Scholar
  224. Uversky VN (2010c) Mysterious oligomerization of the amyloidogenic proteins. FEBS J 277:2940–2953PubMedPubMedCentralGoogle Scholar
  225. Uversky VN (2013a) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta Proteins Proteomics. 1834:932–951Google Scholar
  226. Uversky VN (2013b) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22:693–724PubMedPubMedCentralGoogle Scholar
  227. Uversky VN (2013c) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19:4191–4213PubMedGoogle Scholar
  228. Uversky VN (2013d) Under-folded proteins: conformational ensembles and their roles in protein folding, function, and pathogenesis. Biopolymers 99:870–887PubMedGoogle Scholar
  229. Uversky VN (2014a) Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 1:6PubMedPubMedCentralGoogle Scholar
  230. Uversky VN (2014b) The triple power of D (3): protein intrinsic disorder in degenerative diseases. Front Biosci (Landmark Ed) 19:181–258Google Scholar
  231. Uversky VN (2015a) Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 282:1182–1189PubMedGoogle Scholar
  232. Uversky VN (2015b) Biophysical methods to investigate intrinsically disordered proteins: avoiding an “elephant and blind men” situation. Adv Exp Med Biol 870:215–260PubMedGoogle Scholar
  233. Uversky VN (2016a) Dancing protein clouds: the strange biology and chaotic physics of intrinsically disordered proteins. J Biol Chem 291:6681–6688PubMedPubMedCentralGoogle Scholar
  234. Uversky V (2016b) P53 proteoforms and intrinsic disorder: an illustration of the protein structure–function continuum concept. Int J Mol Sci 17:1874PubMedCentralGoogle Scholar
  235. Uversky VN (2017a) Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Research 6:525PubMedPubMedCentralGoogle Scholar
  236. Uversky VN (2017b) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30PubMedGoogle Scholar
  237. Uversky VN (2017c) Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 239:97–114PubMedGoogle Scholar
  238. Uversky VN (2018) Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics.  https://doi.org/10.1093/bfgp/ely023 CrossRefPubMedGoogle Scholar
  239. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta Proteins Proteomics 1804:1231–1264Google Scholar
  240. Uversky VN, Dunker AK (2012) Multiparametric analysis of intrinsically disordered proteins: looking at intrinsic disorder through compound eyes. Anal Chem 84:2096–2104PubMedGoogle Scholar
  241. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427PubMedGoogle Scholar
  242. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384PubMedGoogle Scholar
  243. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246PubMedGoogle Scholar
  244. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics. 10:S7PubMedPubMedCentralGoogle Scholar
  245. Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC (2014) Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 114:6844–6879PubMedPubMedCentralGoogle Scholar
  246. Uversky VN, Kuznetsova IM, Turoverov KK, Zaslavsky B (2015) Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett 589:15–22PubMedPubMedCentralGoogle Scholar
  247. Uversky VN, Na I, Schenck KSL (2017) Highly disordered proteins in prostate cancer. Curr Protein Peptide Sci 18:453–481Google Scholar
  248. Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinform 8:211Google Scholar
  249. Vacic V, Markwick PRL, Oldfield CJ, Zhao X, Haynes C, Uversky VN, Iakoucheva LM (2012) Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput Biol 8:e1002709PubMedPubMedCentralGoogle Scholar
  250. Vallurupalli P, Chakrabarti N, Pomès R, Kay LE (2016) Atomistic picture of conformational exchange in a T4 lysozyme cavity mutant: an experiment-guided molecular dynamics study. Chem Sci. 7(6):3602–3613PubMedPubMedCentralGoogle Scholar
  251. Van Der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631PubMedPubMedCentralGoogle Scholar
  252. van Rhijn BWG, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH, Zwarthoff EC (2001) The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 61:1265–1268PubMedGoogle Scholar
  253. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127PubMedPubMedCentralGoogle Scholar
  254. Venter JC, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Adams MD et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedPubMedCentralGoogle Scholar
  255. Vihinen M, Torkkila E, Riikonen P (1994) Accuracy of protein flexibility predictions. Proteins Struct Funct Genet 149:141–149Google Scholar
  256. Vlachová V, Teisinger J, Susánková K, Lyfenko A, Ettrich R, Vyklický L (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23:1340–1350PubMedPubMedCentralGoogle Scholar
  257. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645PubMedGoogle Scholar
  258. Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31:637–643PubMedGoogle Scholar
  259. West GM, Chien EYT, Katritch V, Gatchalian J, Chalmers MJ, Stevens RC, Griffin PR (2011) Ligand-dependent perturbation of the conformational ensemble for the GPCR β2adrenergic receptor revealed by HDX. Structure 19:1424–1432PubMedPubMedCentralGoogle Scholar
  260. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365PubMedGoogle Scholar
  261. White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 102:17–40Google Scholar
  262. Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267:1619–1620PubMedPubMedCentralGoogle Scholar
  263. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38PubMedPubMedCentralGoogle Scholar
  264. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29PubMedPubMedCentralGoogle Scholar
  265. Wu H (2013) Higher-order assemblies in a new paradigm of signal transduction. Cell 153:287–292PubMedPubMedCentralGoogle Scholar
  266. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007a) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res. 6:1882–1898PubMedPubMedCentralGoogle Scholar
  267. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007b) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res. 6:1917–1932PubMedPubMedCentralGoogle Scholar
  268. Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135:702–713PubMedPubMedCentralGoogle Scholar
  269. Xue B, Uversky VN (2013) Structural characterizations of phosphorylatable residues in transmembrane proteins from Arabidopsis thaliana. Intrinsically Disord Proteins 1:e25713–e25713PubMedPubMedCentralGoogle Scholar
  270. Xue B, Li L, Meroueh SO, Uversky VN, Dunker AK (2009) Analysis of structured and intrinsically disordered regions of transmembrane proteins. Mol Biosyst 5:1688–1702PubMedPubMedCentralGoogle Scholar
  271. Xue B, Dunker AK, Uversky VN (2012a) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149PubMedGoogle Scholar
  272. Xue B, Dunker AK, Uversky VN (2012b) The roles of intrinsic disorder in orchestrating the Wnt-pathway. J Biomol Struct Dyn 29:843–861PubMedGoogle Scholar
  273. Xue B, Romero PR, Noutsou M, Maurice MM, Rüdiger SGD, William AM Jr, Mizianty MJ, Kurgan L, Uversky VN, Dunker AK (2013) Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Lett 587:1587–1591PubMedPubMedCentralGoogle Scholar
  274. Yang J, Ma Y, Page RC, Misra S, Plow EF, Qin J (2009) Structure of an integrin _IIb_3 transmembrane cytoplasmic heterocomplex provides insight into integrin activation. PNAS 106:17729–17734PubMedGoogle Scholar
  275. Yin H, Flynn AD (2016) Drugging membrane protein interactions. Annu Rev Biomed Eng 18:51–76PubMedPubMedCentralGoogle Scholar
  276. Yin H, Slusky JS, Berger BW, Walters RS, Vilaire G, Litvinov RI, Lear JD, Caputo GA, Bennett JS, DeGrado WF (2012) Computational design of peptides that target transmembrane helices. Science 315:1817–1823Google Scholar
  277. Yu K, Herr AB, Waksman G, Ornitz DM (2000) Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc Natl Acad Sci USA 97:14536–14541PubMedGoogle Scholar
  278. Zaidel-bar R, Itzkovitz S, Ma A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nature 9:858–867Google Scholar
  279. Zhao C, Shukla D (2018) SAXS-guided enhanced unbiased sampling for structure determination of proteins and complexes. Sci Rep 8:1–13Google Scholar
  280. Zhou J, Zhao S, Dunker AK (2018) Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation. J Mol Biol 430:2342–2359PubMedGoogle Scholar
  281. Zwanzig R, Szabo A, Bagchi B (1992) Levinthal’ s paradox. Proc Natl Acad Sci USA 89:20–22PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Biophysics Unit, Biological Sciences DivisionIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of MedicineUniversity of South FloridaTampaUSA
  3. 3.Protein Research GroupInstitute for Biological Instrumentation of the Russian Academy of SciencesPushchinoRussia

Personalised recommendations