Skip to main content
Log in

Role of Coulombic Repulsion in Collisional Lipid Transfer Among SMA(2:1)-Bounded Nanodiscs

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Styrene/maleic acid (SMA) and related copolymers are attracting great interest because they solubilise membrane proteins and lipids to form polymer-encapsulated nanodiscs. These nanodiscs retain a lipid-bilayer core surrounded by a polymer rim and can harbour a membrane protein or a membrane-protein complex. SMA exists in different styrene/maleic acid molar ratios, which results in differences in hydrophobicity and solubilisation properties. We have recently demonstrated fast collisional lipid transfer among nanodiscs encapsulated by the relatively hydrophobic copolymer SMA(3:1). Here, we used time-resolved Förster resonance energy transfer to quantify the lipid-transfer kinetics among nanodiscs bounded by SMA(2:1), a less hydrophobic copolymer that is superior in terms of lipid and membrane-protein solubilisation. Moreover, we assessed the effects of ionic strength and, thereby, the role of Coulombic repulsion in the exchange of lipid molecules among these polyanionic nanodiscs. Collisional lipid transfer was slower among SMA(2:1) nanodiscs (kcol = 5.9 M−1 s−1) than among SMA(3:1) nanodiscs (kcol = 222 M−1 s−1) but still two to three orders of magnitude faster than diffusional lipid exchange among protein-encapsulated nanodiscs or vesicles. Increasing ionic strength accelerated lipid transfer in a manner predicted by the Davies equation, an empirical extension of the Debye–Hückel limiting law, or an extended equation taking into account the finite size of the nanodiscs. Using the latter approach, quantitative agreement between experiment and theory was achieved for an effective nanodisc charge number of z ≈ –33, which is an order of magnitude less than their nominal overall charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aniansson EAG, Wall SN, Almgren M et al (1976) Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J Phys Chem 80:905–922

    Article  CAS  Google Scholar 

  • Bergethon PR (2010) The physical basis of biochemistry: the foundations of molecular biophysics, 2nd edn. Springer, London

    Book  Google Scholar 

  • Bersch B, Dörr JM, Hessel A et al (2017) Proton-detected solid-state NMR spectroscopy of a zinc diffusion facilitator protein in native nanodiscs. Angew Chemie Int Ed 56:2508–2512

    Article  CAS  Google Scholar 

  • Bjerrum N (1924) Zur Theorie der chemischen Reaktionsgeschwindigkeit. Z Phys Chem 108:82–100

    CAS  Google Scholar 

  • Broecker J, Eger BT, Ernst OP (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:1–9

    Article  CAS  Google Scholar 

  • Brønsted JN (1922) Zur Theorie der chemischen Reaktionsgeschwindigkeit. Z Phys Chem 102:169–207

    Google Scholar 

  • Brønsted JN, Teeter CEJ (1923) On kinetic salt effect. J Phys Chem 28:579–587

    Article  Google Scholar 

  • Cuevas Arenas R, Danielczak B, Martel A et al (2017) Fast collisional lipid transfer among polymer-bounded nanodiscs. Sci Rep 7:45875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuevas Arenas R, Klingler J, Vargas C, Keller S (2016) Influence of lipid bilayer properties on nanodisc formation mediated by styrene/maleic acid copolymers. Nanoscale 8(32):15016–15026

    Article  PubMed  CAS  Google Scholar 

  • Davies CW (1938) 397. The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. J Chem Soc 0:2093–2098.

    Article  CAS  Google Scholar 

  • Davies CW (1962) Ion association. Butterworths, Washington

    Google Scholar 

  • Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys Z 24:185–206

    CAS  Google Scholar 

  • Dörr JM, Koorengevel MC, Schäfer M et al (2014) Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci USA 111:18607–18612

    Article  PubMed  CAS  Google Scholar 

  • Dörr JM, Scheidelaar S, Koorengevel MC et al (2016) The styrene–maleic acid copolymer: a versatile tool in membrane research. Eur Biophys J 45:3–21

    Article  PubMed  CAS  Google Scholar 

  • Fullington DA, Nichols JW (1993) Kinetic analysis of phospholipid exchange between phosphatidylcholine/taurocholate mixed micelles: effect of the acyl chain moiety of the micellar phosphatidylcholine. Biochemistry 32:12678–12684

    Article  PubMed  CAS  Google Scholar 

  • Fullington DA, Shoemaker DG, Nichols JW (1990) Characterization of phospholipid transfer between mixed phospholipid–bile salt micelles. Biochemistry 29:879–886

    Article  PubMed  CAS  Google Scholar 

  • Grethen A, Oluwole AO, Danielczak B et al (2017) Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer. Sci Rep 7:11517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guggenheim EA (1935) L. The specific thermodynamic properties of aqueous solutions of strong electrolytes. Phil Mag 19:588–643

    Article  CAS  Google Scholar 

  • Gulati S, Jamshad M, Knowles TJ et al (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J 461:269–278

    Article  PubMed  CAS  Google Scholar 

  • Hazell G, Arnold T, Barker RD et al (2016) Evidence of lipid exchange in styrene maleic acid lipid particle (SMALP) nanodisc systems. Langmuir 32:11845–11853

    Article  PubMed  CAS  Google Scholar 

  • Jones JD, Thompson TE (1990) Mechanism of spontaneous, concentration-dependent phospholipid transfer between bilayers. Biochemistry 29:1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5:267–281

    Article  PubMed  CAS  Google Scholar 

  • Knowles TJ, Finka R, Smith C et al (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131:7484–7485

    Article  PubMed  CAS  Google Scholar 

  • Kuriyan J, Konforti B, Wemmer D (2012) The molecules of life. Physical and chemical principles. Garland Science, New York

    Google Scholar 

  • Lee SC, Knowles TJ, Postis VLG et al (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Logez C, Damian M, Legros C et al (2016) Detergent-free isolation of functional G protein-coupled receptors into nanometric lipid particles. Biochemistry 55:38–48

    Article  PubMed  CAS  Google Scholar 

  • Morrison KA, Akram A, Mathews A et al (2016) Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure. Biochem J 473:4349–4360

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Fukuda M, Kudo T et al (2009) Static and dynamic properties of phospholipid bilayer nanodiscs. J Am Chem Soc 131:8308–8312

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Fukuda M, Kudo T et al (2007) Determination of interbilayer and transbilayer lipid transfers by time-resolved small-angle neutron scattering. Phys Rev Lett 98:238101

    Article  PubMed  CAS  Google Scholar 

  • Nichols JW (1985) Thermodynamics and kinetics of phospholipid monomer-vesicle interaction. Biochemistry 24:6390–6398

    Article  PubMed  CAS  Google Scholar 

  • Nichols JW (1988) Phospholipid transfer between phosphatidylcholine-taurocholate mixed micelles. Biochemistry 27:3925–3931

    Article  PubMed  CAS  Google Scholar 

  • Nichols JW, Pagano RE (1982) Use of resonance energy transfer to study the kinetics of amphiphile transfer between vesicles. Biochemistry 21:1720–1726

    Article  PubMed  CAS  Google Scholar 

  • Nichols JW, Pagano RE (1981) Kinetics of soluble lipid monomer diffusion between vesicles. Biochemistry 20:2783–2789

    Article  PubMed  CAS  Google Scholar 

  • Oluwole AO, Danielczak B, Meister A et al (2017) Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. Angew Chemie Int Ed 56:1919–1924

    Article  CAS  Google Scholar 

  • Orwick-Rydmark M, Lovett JE, Graziadei A et al (2012) Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett 12:4687–4692

    Article  PubMed  CAS  Google Scholar 

  • Orwick MC, Judge PJ, Procek J et al (2012) Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq. Angew Chemie Int Ed 51:4653–4657

    Article  CAS  Google Scholar 

  • Parmar M, Rawson S, Scarff CA et al (2017) Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure. Biochim Biophys Acta 1860:378–383

    Article  PubMed  CAS  Google Scholar 

  • Rharbi Y, Li M, Winnik MA, Hahn KG (2000) Temperature dependence of fusion and fragmentation kinetics of Triton X-100 micelles. J Am Chem Soc 122:6242–6251

    Article  CAS  Google Scholar 

  • Tonge SR, Tighe BJ (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122

    Article  PubMed  CAS  Google Scholar 

  • Vargas C, Cuevas Arenas R, Frotscher E, Keller S (2015) Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. Nanoscale 7:20685–20696

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Bartholomäus Danielczak (TUK) is gratefully thanked for helping with TR-FRET experiments. We thank Dr. Rodrigo Cuevas Arenas, Bartholomäus Danielczak, Erik Frotscher, Johannes Klingler, Florian Mahler, and Dr. Carolyn Vargas (all TUK) for fruitful discussions. This work was supported by the Carl Zeiss Foundation through the Centre for Lipidomics (CZSLip) and the Deutsche Forschungsgemeinschaft (DFG) through International Research Training Group (IRTG) 1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Keller.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grethen, A., Glueck, D. & Keller, S. Role of Coulombic Repulsion in Collisional Lipid Transfer Among SMA(2:1)-Bounded Nanodiscs. J Membrane Biol 251, 443–451 (2018). https://doi.org/10.1007/s00232-018-0024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-018-0024-0

Keywords

Navigation