Skip to main content
Log in

Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Infections caused by mycobacteria are difficult to treat due to their inherent physiology, cellular structure, and intracellular lifestyle. Mycobacterium tuberculosis is a pathogen of global concern as it causes tuberculosis (TB) in humans, which requires 6–9 months of chemotherapy. The situation is further exacerbated in the case of infections caused by drug-resistant strains, which necessitate the prolonged use of agents associated with increased host toxicities. Great effort has been invested into the development of new agents for the treatment of drug-resistant infections, in addition to novel strategies to reduce treatment time. Energy production using oxidative phosphorylation is essential for the survival of M. tuberculosis, even under conditions of dormancy. Many compounds have been recently discovered that inhibit different aspects of energy metabolism in mycobacteria, some of which have been approved for human use or are currently undergoing development. The most successful examples include inhibitors of QcrB and AtpE, which are part of the cytochrome bc 1 complex and FoF1-ATP synthase, respectively. In addition, many of the discovered inhibitors are active against drug-resistant strains of M. tuberculosis, inhibit nonreplicating cells, and also show potential for the treatment of other mycobacterial infections. In the current review, we focus on the discovery of mycobacterial QcrB and AtpE inhibitors, their modes of action, and the associated mechanisms of resistance observed to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  CAS  PubMed  Google Scholar 

  • Abrahams KA et al (2012) Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS ONE 7:e52951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • AlMatar M, AlMandeal H, Var I, Kayar B, Köksal F (2017) New drugs for the treatment of Mycobacterium tuberculosis infection. Biomed Pharmacother 91:546–558

    Article  CAS  PubMed  Google Scholar 

  • Almeida D et al (2016) Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 60:4590–4599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andries K et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    Article  CAS  PubMed  Google Scholar 

  • Andries K et al (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS ONE 9:e102135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H (1998) Yeast mitochondrial F1 F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J17:7170–7178

    Article  Google Scholar 

  • Arora K et al (2014) Respiratory flexibility in response to inhibition of cytochrome c oxidase in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:6962–6965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bald D, Koul A (2010) Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol Lett 308:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bald D, Villellas C, Lu P, Koul A (2017) Targeting energy metabolism in Mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. mBio 8:e00272

    Article  PubMed Central  PubMed  Google Scholar 

  • Ballell L et al (2013) Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem 8:313–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardhan K, Hawkey C, Long R, Morgan A, Wormsley K, Moules I, Brocklebank D (1995) Lansoprazole versus ranitidine for the treatment of reflux oesophagitis. Aliment Pharmacol Thera 9:145–151

    Article  CAS  Google Scholar 

  • Bloemberg GV et al (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986–1988

    Article  PubMed Central  PubMed  Google Scholar 

  • Bollenbach T (2015) Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution. Curr Opin Microbiol 27:1–9

    Article  CAS  PubMed  Google Scholar 

  • Boyer PD (1997) The ATP synthase-a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  CAS  PubMed  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  CAS  PubMed  Google Scholar 

  • Bryant JM et al (2016) Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 354:751–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caminero JA, Sotgiu G, Zumla A, Migliori GB (2010) Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis 10:621–629

    Article  CAS  PubMed  Google Scholar 

  • Carter KR, Ah-lim T, Graham P (1981) The coordination environment of mitochondrial cytochromes b. FEBS Lett 132:243–246

    Article  CAS  PubMed  Google Scholar 

  • Chao MC, Rubin EJ (2010) Letting sleeping dogs lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64:293–311

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Moraski GC, Cramer J, Miller MJ, Schorey JS (2014) Bactericidal activity of an imidazo[1,2-a]pyridine using a mouse M. tuberculosis infection model. PLoS ONE 9:e87483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christophe T, Ewann F, Jeon HK, Cechetto J, Brodin P (2010) High-content imaging of Mycobacterium tuberculosis-infected macrophages: an in vitro model for tuberculosis drug discovery. Future 2:1283–1293

    CAS  Google Scholar 

  • Cole S et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Conde MB, de Silva JRL (2011) New regimens for reducing the duration of the treatment of drug susceptible pulmonary tuberculosis. Drug Drv Res 72(6):501–508

    Article  CAS  Google Scholar 

  • Cook GM, Hards K, Vilchèze C, Hartman T, Berney M (2014) Energetics of respiration and oxidative phosphorylation in mycobacteria. Microbiol Spectr 2:3

    Article  CAS  Google Scholar 

  • Cook G et al (2017) Oxidative phosphorylation as a target space for tuberculosis: success, caution, and future directions. Microbiol Spectr 5:3

    Google Scholar 

  • Cottrell GS, Hooper NM, Turner AJ (2000) Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese (II)-dependent enzyme. Biochemistry 39:15121–15128

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR (2004) The cytochrome bc 1 complex: function in the context of structure. Annu Rev Physiol 66:689–733

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Berry EA (1998) Structure and function of the cytochrome bc 1 complex of mitochondria and photosynthetic bacteria. Curr Opin Struct Biol 8:501–509

    Article  CAS  PubMed  Google Scholar 

  • da Silva PEA, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. Antimicrob Chemother 66(7):1417–1430

    Article  CAS  Google Scholar 

  • de Jonge MR, Koymans LH, Guillemont JE, Koul A, Andries K (2007) A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins 67:971–980

    Article  CAS  PubMed  Google Scholar 

  • Dehm P, Nordwig A (1970) The cleavage of prolyl peptides by kidney peptidases. Eur J Biochem 17:364–371

    Article  CAS  PubMed  Google Scholar 

  • Demangel C, Stinear TP, Cole ST (2009) Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol 7:50–60

    Article  CAS  PubMed  Google Scholar 

  • Devenish RJ, Prescott M, Roucou X, Nagley P (2000) Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex. Biochim Biophys Acta 1458:428–442

    Article  CAS  PubMed  Google Scholar 

  • Dong CK et al (2011) Identification and validation of tetracyclic benzothiazepines as Plasmodium falciparum cytochrome bc 1 inhibitors. Chem Biol 18:1602–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Field SK (2015) Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 6:170–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gajadeera CS, Weber J (2013) Escherichia coli F1F0-ATP synthase with a b/δ fusion protein allows analysis of the function of the individual b subunits. J Biol Chem 288:26441–26447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geier B, Haase U, Von Jagow G (1994) Inhibitor binding to the Qp-site of bc 1 complex: comparative studies of yeast mutants and natural inhibitor resistant fungi. Biochem Soc Trans 22:203–209

    Article  CAS  PubMed  Google Scholar 

  • Gengenbacher M, Kaufmann SH (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36:514–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerth K, Irschik H, Reichenbach H, Trowitzsch W (1980) Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). J Antibiot 33:1474–1479

    Article  CAS  PubMed  Google Scholar 

  • Goldman RC (2013) Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis? Tuberculosis 93:569–588

    Article  CAS  PubMed  Google Scholar 

  • Gomez JE, McKinney JD (2004) M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 84:29–44

    Article  PubMed  Google Scholar 

  • Gras J (2013) Bedaquiline for the treatment of pulmonary, multidrug-resistant tuberculosis in adults. Drugs Today 49:353–361

    CAS  PubMed  Google Scholar 

  • Grossman TH, Shoen CM, Jones SM, Jones PL, Cynamon MH, Locher CP (2015) The efflux pump inhibitor timcodar improves the potency of antimycobacterial agents. Antimicrob Agents Chemother 59(3):1534–1541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta S, Cohen KA, Winglee K, Malga M, Diarra B, Bishal WR (2014) Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:574–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta S, Tyagi S, Bishai WR (2015) Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother 59:673–676

    Article  CAS  PubMed  Google Scholar 

  • Guy ES, Mallampalli A (2008) Managing TB in the 21st century: existing and novel drug therapies. Ther Adv Chronic Dis 2:401–408

    Article  Google Scholar 

  • Haagsma AC et al (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53:1290–1292

    Article  CAS  PubMed  Google Scholar 

  • Haagsma AC, Podasca I, Koul A, Andries K, Guillemont J, Lill H, Bald D (2011) Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS ONE 6:e23575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hards K et al (2015) Bactericidal mode of action of bedaquiline. J Antimicrob Chemo 70:2028–2037

    CAS  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartkoorn RC, Uplekar S, Cole ST (2014) Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2979–2981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrmann J, Rybniker J, Muller R (2017) Novel and revisited approaches in antituberculosis drug discovery. Curr Opin Biotechnol 48:94–101

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DT, Liu J, Lee RB, Lee RE (2016) New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 102:55–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holyoake LV, Poole RK, Shepherd M (2015) The CydDC family of transporters and their roles in oxidase assembly and homeostasis. Adv Microb Physiol 66:1–53

    Article  PubMed  Google Scholar 

  • Huitric E, Verhasselt P, Andries K, Hoffner SE (2007) In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 51:4202–4204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI (2010) Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54:1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Iino R, Noji H (2013) Operation mechanism of FoF1-adenosine triphosphate synthase revealed by its structure and dynamics. IUBMB Life 65:238–246

    Article  CAS  PubMed  Google Scholar 

  • Jackson M (2014) The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med 4:a021105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jang J, Kim R, Woo M, Jeong J, Park DE, Kim G, Delorme V (2017) Efflux attenuates the antibacterial activity of Q203 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02637-16

    Google Scholar 

  • Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210

    PubMed Central  PubMed  Google Scholar 

  • Jordan DB et al (1999) Oxazolidinones: a new chemical class of fungicides and inhibitors of mitochondrial cytochrome bc 1 function. Pest Manag Sci 55:213–215

    Article  CAS  Google Scholar 

  • Kalia NP et al (2017) Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proc Natl Acad Sci USA 114:7426–7431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kana BD, Karakousis PC, Parish T, Dick T (2014) Future target-based drug discovery for tuberculosis? Tuberculosis 94:551–556

    Article  CAS  PubMed  Google Scholar 

  • Katoch V (2004) Infections due to non-tuberculous mycobacteria (NTM). Indian J Med Res 120:290

    CAS  PubMed  Google Scholar 

  • Kavianinia I, Kunalingam L, Harris PW, Cook GM, Brimble MA (2016) Total synthesis and stereochemical revision of the anti-tuberculosis peptaibol trichoderin A. Org Lett 18:3878–3881

    Article  CAS  PubMed  Google Scholar 

  • Kleinschroth T, Castellani M, Trinh CH, Morgner N, Brutschy B, Ludwig B, Hunte C (2011) X-ray structure of the dimeric cytochrome bc 1 complex from the soil bacterium Paracoccus denitrificans at 2.7 Å resolution. Biochim Biophys Acta 1807:1606–1615

    Article  CAS  PubMed  Google Scholar 

  • Ko Y, Choi I (2016) Putative 3D structure of QcrB from Mycobacterium tuberculosis cytochrome bc1 complex, a novel drug-target for new series of antituberculosis agent Q203. Bull Korean Chem Soc 37:725–731

    Article  CAS  Google Scholar 

  • Koul A et al (2007) Diarylquinolines target subunit-c of mycobacterial ATP synthase. Nat Chem Biol 3:323

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht DA et al (2016) Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat Comm 7:12393

    Article  CAS  Google Scholar 

  • Lounis N, Gevers T, Van Den Berg J, Vranckx L, Andries K (2009) ATP synthase inhibition of Mycobacterium avium is not bactericidal. Antimicrob Agents Chemother 53:4927–4929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu P, Lill H, Bald D (2014) ATP synthase in mycobacteria: special features and implications for a function as drug target. Biochim Biophys Acta 1837:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Lu P et al (2015) The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Sci Rep 5:10333

    Article  PubMed Central  PubMed  Google Scholar 

  • Mak PA et al (2012) A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 7:1190–1197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margulis L (1971) Symbiosis and evolution. Sci Am 225:48–61

    Article  CAS  PubMed  Google Scholar 

  • Martinez LO et al (2003) Ectopic β-chain of ATP synthase is an apolipoprotein AI receptor in hepatic HDL endocytosis. Nature 421:75–79

    Article  CAS  PubMed  Google Scholar 

  • Matsoso LG et al (2005) Function of the cytochrome bc 1 -aa 3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J Bac 187:6300–6308

    Article  CAS  Google Scholar 

  • Milano A et al (2009) Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5–MmpL5 efflux system. Tuberculosis 89:84–90

    Article  CAS  PubMed  Google Scholar 

  • Moraski GC, Markley LD, Hipskind PA, Boshoff H, Cho S, Franzblau SG, Miller MJ (2011) Advent of imidazo[1, 2-a]pyridine-3-carboxamides with potent multi-and extended drug resistant antituberculosis activity. ACS Med Chem Lett 2:466–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moraski GC et al (2015) Putting tuberculosis (TB) to rest: transformation of the sleep aid, Ambien, and “anagrams” generated potent antituberculosis agents. ACS Infect Dis 1:85–90

    Article  CAS  PubMed  Google Scholar 

  • Moraski GC et al (2016) Arrival of imidazo[2,1-b] thiazole-5-carboxamides: potent anti-tuberculosis agents that target QcrB. ACS Infect Dis 2:393–398

    Article  CAS  PubMed  Google Scholar 

  • Moreira et al (2015) Target mechanism-based whole-cell screening identifies bortezomib as an inhibitor of caseinolytic protease in Mycobacteria. mBio 6:e00253-15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299

    Article  CAS  PubMed  Google Scholar 

  • Nowak KF, McCarty RE (2004) Regulatory role of the C-terminus of the ε subunit from the chloroplast ATP synthase. Biochemistry 43:3273–3279

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Zheng H, Tan Y, Song Y, Zhao Y (2017) In vitro activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob Agents Chemother 61:e02627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    Article  CAS  PubMed  Google Scholar 

  • Pethe K et al (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Petrella S, Cambau E, Chauffour A, Andries K, Jarlier V, Sougakoff W (2006) Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother 50:2853–2856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phummarin N, Boshoff HI, Tsang PS, Dalton J, Wiles S, Barry CE 3rd, Copp BR (2016) SAR and identification of 2-(quinolin-4-yloxy)acetamides as Mycobacterium tuberculosis cytochrome bc 1 inhibitors. MedChemComm 7:2122–2127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pissinate K et al (2016) 2-(Quinolin-4-yloxy)acetamides are active against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. ACS Med Chem Lett 7:235–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piubello A et al (2014) High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis 18:1188–1194

    Article  CAS  PubMed  Google Scholar 

  • Pogoryelov D, Yildiz Ö, Faraldo-Gómez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073

    Article  CAS  PubMed  Google Scholar 

  • Preiss L, Langer JD, Yildiz Ö, Eckhardt-Strelau L, Guillemont JE, Koul A, Meier T (2015) Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1:e1500106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pruksakorn P et al (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663

    Article  CAS  PubMed  Google Scholar 

  • Pruksakorn P, Arai M, Liu L, Moodley P, Jacobs WR Jr, Kobayashi M (2011) Action-mechanism of trichoderin A, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp. Biol Pharm Bull 34:1287–1290

    Article  CAS  PubMed  Google Scholar 

  • Rao PK, Roxas BA, Li Q (2008a) Determination of global protein turnover in stressed mycobacterium cells using hybrid-linear ion trap-fourier transform mass spectrometry. Anal Chem 80:396–406

    Article  CAS  PubMed  Google Scholar 

  • Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008b) The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Nat Acad Sci USA 105:11945–11950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds RC et al (2012) High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv. Tuberculosis 92:72–83

    Article  CAS  PubMed  Google Scholar 

  • Rotsaert FA, Ding MG, Trumpower BL (2008) Differential efficacy of inhibition of mitochondrial and bacterial cytochrome bc 1 complexes by center N inhibitors antimycin, ilicicolin H and funiculosin. Biochim Biophys Acta 1777:211–219

    Article  CAS  PubMed  Google Scholar 

  • Rybniker J et al (2014) Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe 16:538–548

    Article  CAS  PubMed  Google Scholar 

  • Rybniker J, Vocat A, Sala C, Busso P, Pojer F, Benjak A, Cole ST (2015) Lansoprazole is an antituberculous prodrug targeting cytochrome bc 1 . Nat Commun. https://doi.org/10.1038/ncomms8659

    PubMed Central  PubMed  Google Scholar 

  • Sacks LV, Behrman RE (2009) Challenges, successes and hopes in the development of novel TB therapeutics. Future 1:749–756

    CAS  Google Scholar 

  • Sarver JG, Trendel JA, Bearss NR, Wang L, Luniwal A, Erhardt PW, Viola RE (2012) Early stage efficacy and toxicology screening for antibiotics and enzyme inhibitors. J Biomol Screen 17:673–682

    Article  CAS  PubMed  Google Scholar 

  • Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012) New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 56:2326–2334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh S et al (2015) Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg Med Chem 23:742–752

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Wolff KA, Nguyen L (2013) Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr Top Microbiol Immunol 374:53–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tantry SJ et al (2017) Discovery of imidazo[1,2-a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J Med Chem 60:1379–1399

    Article  CAS  PubMed  Google Scholar 

  • Tran SL, Cook GM (2005) The F1Fo-ATP synthase of Mycobacterium smegmatis is essential for growth. J Bac 187:5023–5028

    Article  CAS  Google Scholar 

  • Trumpower BL (1990) Cytochrome bc 1 complexes of microorganisms. Microbiol Rev 54:101–129

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Westhuyzen R et al (2015) Pyrrolo[3, 4-c]pyridine-1, 3(2H)-diones: a novel antimycobacterial class targeting mycobacterial respiration. J Med Chem 58:9371–9381

    Article  CAS  PubMed  Google Scholar 

  • Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P, Rieder HL (2010) Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med 182:684–692

    Article  PubMed  Google Scholar 

  • Villemagne B, Crauste C, Flipo M, Baulard AR, Déprez B, Willand N (2012) Tuberculosis: the drug development pipeline at a glance. Eur J Med Chem 51:1–16

    Article  CAS  PubMed  Google Scholar 

  • von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64

    Article  CAS  Google Scholar 

  • Von Jagow G, Ljungdahl PO, Graf P, Ohnishi T, Trumpower B (1984) An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc 1 complex. J Biol Chem 259:6318–6326

    Google Scholar 

  • Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE, Boshoff HI (2011) Fumerate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7(10):e1002287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • WHO (2016) Global tuberculosis report. World Health Organization, Geneva

    Google Scholar 

  • Xia D et al (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277:60–66

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Esser L, Tang W-K, Zhou F, Zhou Y, Yu L, Yu C-A (2013) Structural analysis of cytochrome bc 1 complexes: implications to the mechanism of function. Biochim Biophys Acta 1827:1278–1294

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Kassovska-Bratinova S, The JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H (2011) Reduction of clofazimine by mycobacterial type 2 NADH: quinone oxidoreductase. J Biol Chem 286:10276–10287

    Article  CAS  PubMed  Google Scholar 

  • Yew W (2006) Development of new antituberculosis drugs. Nova Science Publishers, New York

    Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research on antibiotic discovery and resistance in KTs laboratory at Memorial University of Newfoundland (MUN) is currently funded by a Discovery Grant (DG) from the Natural Sciences and Engineering Research Council of Canada (NSERC). BMP and CKM were the recipients of a Science Undergraduate Research Award (from MUN) and an Undergraduate Student Research Award (from NSERC), respectively. We would like to acknowledge the Department of Biology and the Faculty of Graduate Studies (MUN) for additional student support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Tahlan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bown, L., Srivastava, S.K., Piercey, B.M. et al. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. J Membrane Biol 251, 105–117 (2018). https://doi.org/10.1007/s00232-017-9997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9997-3

Keywords

Navigation