Advertisement

The Journal of Membrane Biology

, Volume 250, Issue 2, pp 195–204 | Cite as

Spectroscopic, Polarographic, and Microcalorimetric Studies on Mitochondrial Dysfunction Induced by Ethanol

  • Long Ma
  • Jia-Xin DongEmail author
  • Can Wu
  • Xue-Yi Li
  • Jing Chen
  • Hong Zhang
  • Yi LiuEmail author
Article

Abstract

Liver mitochondria are involved in several important life processes; mitochondrial dysfunction and disorders are implicated in several human diseases. Alcohol permeates all tissues of the body and exerts some intrinsic hepatotoxicity. In this work, our results demonstrated that ethanol caused a series of mitochondria permeability transition pore (MPTP) opening factors such as mitochondrial swelling, increased permeability of H+ and K+, collapsed membrane potential, and increased membrane fluidity. Furthermore, mitochondrial ultrastructure alternation observed clearly by transmission electron microscopy and the release of Cytochrome c could explain the MPTP opening from another aspect. Moreover, ethanol damaged the mitochondrial respiration system and induced disturbance of mitochondrial energy metabolism which was monitored by polarographic and microcalorimetric methods, respectively. Considered together, these damages may promote both apoptotic and necrotic cell death and contribute to the onset or progression alcohol-induced liver diseases.

Keywords

Ethanol Mitochondria Membrane permeability transition Ultrastructure Microcalorimetry 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21463008); Guangxi Natural Science Foundation Program (No. 2012GXNSFBA053119); and the Foundation of State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2012 -A10).

Supplementary material

232_2017_9947_MOESM1_ESM.docx (85 kb)
Supplementary material 1 (DOCX 85 KB)

References

  1. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19(9):1088–1095CrossRefPubMedGoogle Scholar
  2. Armstrong JS (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6(5):225–234CrossRefPubMedGoogle Scholar
  3. Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta 1606(1–3):137–146Google Scholar
  4. Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenergy Biomembr 34(3):227–233CrossRefGoogle Scholar
  5. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. effect of protons and divalent cations. J Biol Chem 267(5):2934–2939PubMedGoogle Scholar
  6. Castanha Zanoli JC, Maioli MA, Medeiros HCD, Mingatto FE (2012) Abamectin affects the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Toxicol In Vitro 26(1):51–56CrossRefPubMedGoogle Scholar
  7. Colell A, Garcia-Ruiz C, Miranda M, Ardite E, Mari M, Morales A, Corrales F, Kaplowitz N, Frenandez-Checa C (1998) Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology 115(6):1541–1551CrossRefPubMedGoogle Scholar
  8. Dong JX, Zhao GY, Yu QLY, Li R, Yuan L, Chen J, Liu Y (2013) Mitochondrial dysfunction induced by Honokiol. J Membr Biol 246(5):375–381CrossRefPubMedGoogle Scholar
  9. Dong P, Li JH, Xu SP, Wu XJ, Xiang X, Yang QQ, Jin JC, Liu Y, Jiang FL (2016) Mitochondrial dysfunction induced by ultra-small silver nanoclusters with a distinct toxic mechanism. J Hazard Mater 308(5):139–148CrossRefPubMedGoogle Scholar
  10. Eliseev RA, Salter JD, Gunter KK, Gunter TE (2003) Bcl-2 and tBid proteins counter-regulate mitochondrial potassium transport. Biochim Biophys Acta 1604(1):1–5Google Scholar
  11. Flavia F, Ileana CS, Antoni B (2008) Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 60(9):557–568CrossRefGoogle Scholar
  12. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13(9):1423–1433CrossRefPubMedGoogle Scholar
  13. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766PubMedGoogle Scholar
  14. Hirano T, Neil K, Tsukamoto H, Kamimura S, Fernández-Checa JC (1992) Hepatic mitochondrial GSH depletion and progression of experimental alcoholic liver disease in rats. Hepatology 16(6):1423–1428CrossRefPubMedGoogle Scholar
  15. Hoek JB, Cahill A, Pastorino JG (2002) Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 122(7):2049–2063CrossRefPubMedPubMedCentralGoogle Scholar
  16. John CMB (2010) Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review. Int J Environ Res Public Health 7(4):1540–1557CrossRefGoogle Scholar
  17. Kobayashi T, Kuroda S, Tada M, Houkin K, Iwasaki Y, Abe H (2003) Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res 960(1–2):62–70CrossRefPubMedGoogle Scholar
  18. Kurose I, Higuchi H, Kato S, Miura S, Watanabe N, Kamegaya Y, Tomita K, Takaishi K, Horie Y, Fukuda M, Mizukami K, Ishii H (1997) Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol. Gastroenterology 112(4):1331–1343CrossRefPubMedGoogle Scholar
  19. Lai L, Jin JC, Xu ZQ, Ge YS, Jiang FL, Liu Y (2015) Spectroscopic and microscopic studies on the mechanism of mitochondrial toxicity Induced by CdTe QDs modified with different ligands. J Membrane Biol 248(4):727–740CrossRefGoogle Scholar
  20. Levine C, Cheney MA (2000) Metabolic responses to acute toxicity of alkylphenols and alkylphenol polyethoxylates in Eliptio Complanata measured by calorespirometry. Environ Toxicol Chem 19(19):1906–1910CrossRefGoogle Scholar
  21. Li JH, Zhang Y, Xiao Q, Tian FF, Liu XR, Li R, Zhao GY, Jiang FL, Liu Y (2011) Mitochondria as target of quantum dots toxicity. J Hazard Mater 194(30):440–444CrossRefPubMedGoogle Scholar
  22. Liu XR, Alex B, Chen JH (2015) Dynamics of the BH3-only protein binding interface of Bcl-xL. Biophys J 109(5):1049–1057CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu XR, Li JH, Zhang Y, Ge YS, Tian FF, Dai J, Jiang FL, Liu Y (2011) Mitochondrial permeability transition induced by different concentrations of Zinc. J Membr Biol 244(3):105–112CrossRefPubMedGoogle Scholar
  24. Lovett GS, Sweetman AJ (1983) The analysis of drug action on mitochondrial oxidative phosphorylation. The choice of organic solvent for water-insoluble drugs. Methods Find Exp Clin Pharmacol 5(10):695–699PubMedGoogle Scholar
  25. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P (2012) Mitochondria-Ros crosstalk in the control of cell death and aging. J Signal Transduct, Article ID 329635. doi: 10.1155/2012/329635
  26. Murphy MP (2001) How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochim Biophys Acta 1504(1):1–11CrossRefPubMedGoogle Scholar
  27. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490CrossRefPubMedGoogle Scholar
  28. Nohl H, Gille L, Stainek K (2005) Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69(5):719–723CrossRefPubMedGoogle Scholar
  29. Passarella S, Atlante A, Valenti D, de BL (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2(5):319–343CrossRefPubMedGoogle Scholar
  30. Petronilli V, Sileikyte J, Zulian A, Dabbeni-Sala F, Jori G, Gobbo S, Tognon G, Nikolov P, Bernardi P, Ricchelli F (2009) Switch from inhibition to activation of the mitochondrial permeability transition during hematoporphyrin-mediated photooxidative stress: unmasking pore-regulating external thiols. Biochim Et Biophys Acta 1787(7):897–904CrossRefGoogle Scholar
  31. Pon LA, Schon EA (2007) Methods in cell biology, vol 80: mitochondria, 2nd edn. Academic Press, New YorkGoogle Scholar
  32. Ricchelli F, Gobbo S, Moreno G, Salet C (1999) Changes of the fluidity of mitochondrial membranes induced by the permeability transition. BioChemistry 38(29):9295–9300CrossRefPubMedGoogle Scholar
  33. Ricchelli F, Beghetto C, Gobbo S, Tognon G, Moretto V, Crisma M (2003) Structural modifications of the permeability transition pore complex in resealed mitochondria induced by matrix-entrapped disaccharides. Arch Biochem Biophys 410(1):155–160CrossRefPubMedGoogle Scholar
  34. Ricchelli F, Jori G, Gobbo S, Nikolov P, Petronilli V (2005) Discrimination between two steps in the mitochondrial permeability transition process. Int J Biochem Cell Biol 37(9):1858–1868CrossRefPubMedGoogle Scholar
  35. Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797(6–7):907–912CrossRefPubMedGoogle Scholar
  36. Syed M, Skonberg C, Hansen SH (2013) Effect of organic solvents on oxidative phosphorylation in rat liver mitochondria: choice of organic solvents. Toxicol In Vitro 27(8):2135–2141CrossRefPubMedGoogle Scholar
  37. Wu DF, Cederbaum AI (2009) Oxidative stress and alcoholic liver disease. Semin Liver Dis 29(2):141–154CrossRefPubMedGoogle Scholar
  38. Xia CF, Jin JC, Yuan L, Zhao J, Chen XY, Jiang FL, Qin CQ, Dai J, Liu Y (2013) Microcalorimetric studies of the effect of cerium(III) on isolated rice mitochondria fed by pyruvate. Chemosphere 91(11):1577–1582CrossRefPubMedGoogle Scholar
  39. Yang LY, Gao JL, Gao T, Dong P, Ma L, Jiang FL, Liu Y (2016) Toxicity of polyhydrolated fullerene to mitochondria. J Hazard Mater 301(15):119–126CrossRefPubMedGoogle Scholar
  40. Zhao J, Zhou ZQ, Jin JC, Yuan L, He H, Jiang FL, Yang XG, Dai J, Liu Y (2014) Mitochondrial dysfunction induced by different concentrations of gadolinium ion. Chemosphere 100:194–199CrossRefPubMedGoogle Scholar
  41. Zhao J, Ma L, Xiang X, Guo QL, Jiang FL, Liu Y (2016) Microcalorimetric studies on the energy release of isolated rat mitochondria under different concentrations of gadolinium (III). Chemosphere 153:414–418CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.StateKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China
  3. 3.College of Life ScienceGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations