Advertisement

The Journal of Membrane Biology

, Volume 249, Issue 6, pp 757–767 | Cite as

Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro

  • Lu Lai
  • Ya-Ping Li
  • Ping Mei
  • Wu Chen
  • Feng-Lei Jiang
  • Yi Liu
Article

Abstract

The mitochondrial toxicity induced by GSH-CdTe Quantum dots (QDs) of different sizes was investigated. The decreases in absorbance and transmission electron microscopy images show that QDs induce the swelling of mitochondria. Results of flow cytometry indicate that QDs cause a reduction of mitochondrial membrane potential (MMP). A remarkable increase in fluidity of protein regions of mitochondrial membrane is observed, whereas the lipid regions are not obviously affected. Cyclosporin A (CsA) effectively prevents the QD-induced mitochondrial swelling. On the basis of these results, it is proposed that QDs induce mitochondrial permeability transition (MPT). Moreover, with increasing QDs size, a pronounced MPT is observed. The difference between the membrane fluidity induced by QDs and Cadmium ion and the ineffective protective effects of EDTA suggests that the mitochondrial toxicity of QDs cannot be only attributed to the release of metal ion. The protective effects of HSA indicate that the interaction of QDs with pore-forming protein gives rise to the increase in membrane fluidity. This hypothesis is demonstrated by the interaction of QDs with model membranes and proteins using differential scanning calorimetry and isothermal titration microcalorimetry. In conclusion, as the size of QDs increases, the binding affinity of QDs with membrane protein increases, and therefore causes a pronounced mitochondrial damage.

Keywords

CdTe Quantum dots Mitochondria Model membranes 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Science Fund for Distinguished Young Scholars of China (Grant No. 21225313) and National Natural Science Foundation of China (Grant Nos. 21403017, 21473125).

Supplementary material

232_2016_9920_MOESM1_ESM.docx (525 kb)
Supplementary material 1 (DOCX 524 kb)

References

  1. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495CrossRefPubMedGoogle Scholar
  2. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939PubMedGoogle Scholar
  3. Chen N, He Y, Su YY, Li XM, Huang Q, Wang HF, Zhang XZ, Tai RZ, Fan CH (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33:1238–1244CrossRefPubMedGoogle Scholar
  4. Choi B, Hwang S, Kim I, Shin H, Kim Y, Kim E (1998) Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor. Appl Phys Lett 73:3129–3131CrossRefGoogle Scholar
  5. Cossarizza A, Baccaranicontri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45CrossRefPubMedGoogle Scholar
  6. Deng ZJ, Liang MT, Toth I, Monteiro M, Minchin RF (2012) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7:314–322CrossRefPubMedGoogle Scholar
  7. Eliseev P, Li H, Stintz A, Liu G, Newell T, Malloy K, Lester L (2000) Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes. Appl Phys Lett 77:262–264CrossRefGoogle Scholar
  8. Fernandes MA, Custodio JB, Santos MS, Moreno AJ, Vicente JA (2006) Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion 6:176–185CrossRefPubMedGoogle Scholar
  9. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin a binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Detection of Mitochondrial Diseases, Springer US, pp 167–172Google Scholar
  10. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 4(2):165–172CrossRefGoogle Scholar
  11. Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470CrossRefPubMedGoogle Scholar
  12. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97CrossRefPubMedGoogle Scholar
  13. Kobayashi T, Kuroda S, Tada M, Houkin K, Iwasaki Y, Abe H (2003) Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res 960:62–70CrossRefPubMedGoogle Scholar
  14. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15CrossRefPubMedGoogle Scholar
  15. Lai L, Lin C, Xu ZQ, Han XL, Tian FF, Mei P, Li DW, Ge YS, Jiang FL, Zhang YZ (2012) Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin. Spectrochim Acta Part A 97:366–376CrossRefGoogle Scholar
  16. Lai L, Jin JC, Xu ZQ, Ge YS, Jiang FL, Liu Y (2015a) Spectroscopic and microscopic studies on the mechanism of mitochondrial toxicity induced by CdTe QDs modified with different ligands. J Membran Biol 248(4):1–14CrossRefGoogle Scholar
  17. Lai L, Jin JC, Xu ZQ, Mei P, Jiang FL, Liu Y (2015b) Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots. Chemosphere 135:240–249CrossRefPubMedGoogle Scholar
  18. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1787:1395–1401CrossRefGoogle Scholar
  19. Leutwyler WK, Bürgi SL, Burgl H (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  20. Li JH, Zhang Y, Xiao Q, Tian FF, Liu XR, Li R, Zhao GY, Jiang FL, Liu Y (2011) Mitochondria as target of quantum dots toxicity. J Hazard Mater 194:440–444CrossRefPubMedGoogle Scholar
  21. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–330CrossRefPubMedGoogle Scholar
  22. Liu XR, Li JH, Zhang Y, Ge YS, Tian FF, Dai J, Jiang FL, Liu Y (2011) Mitochondrial permeability transition induced by different concentrations of zinc. J Membran Biol 244:105–112CrossRefGoogle Scholar
  23. Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120CrossRefGoogle Scholar
  24. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nalika N, Parvez S (2015) Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Toxicol Mech Method 25(5):1–9CrossRefGoogle Scholar
  26. Passarella S, Atlante A, Valenti D, de Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343CrossRefPubMedGoogle Scholar
  27. Petronilli V, Šileikytė J, Zulian A, Dabbeni-Sala F, Jori G, Gobbo S, Tognon G, Nikolov P, Bernardi P, Ricchelli F (2009) Switch from inhibition to activation of the mitochondrial permeability transition during hematoporphyrin-mediated photooxidative stress. Unmasking pore-regulating external thiols. Biochimica et Biophysica Acta 1787:897–904CrossRefPubMedGoogle Scholar
  28. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100CrossRefPubMedGoogle Scholar
  29. Raffaelle RP, Castro SL, Hepp AF, Bailey SG (2002) Quantum dot solar cells. Prog Photovoltaics Res Appl 10:433–439CrossRefGoogle Scholar
  30. Ricchelli F, Jori G, Gobbo S, Nikolov P, Petronilli V (2005) Discrimination between two steps in the mitochondrial permeability transition process. Int J Biochem Cell Biol 37:1858–1868CrossRefPubMedGoogle Scholar
  31. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, Schmid G, Simon U, Kreyling WG (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6:36–46CrossRefPubMedGoogle Scholar
  32. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870CrossRefPubMedGoogle Scholar
  33. Son DI, Kwon BW, Park DH, Seo W-S, Yi Y, Angadi B, Lee C-L, Choi WK (2012) Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7:465–471CrossRefPubMedGoogle Scholar
  34. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium based, aqueous phase–synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25CrossRefPubMedGoogle Scholar
  35. Unfried K, Albrecht C, Klotz L-O, Von Mikecz A, Grether-Beck S, Schins RP (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71CrossRefGoogle Scholar
  36. Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71CrossRefPubMedGoogle Scholar
  37. Xiao JB, Kai GY, Chen XQ (2012) Effect of CdTe QDs on the protein-drug interactions. Nanotoxicology 6:304–314CrossRefPubMedGoogle Scholar
  38. Xin LL, Wang JS, Fan GQ, Che BZ, Wu YH, Guo SF, Tong J (2015) Oxidative stress and mitochondrial injury‐mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Environ ToxicolGoogle Scholar
  39. Yang YJ, Lan JF, Xu ZG, Chen T, Zhao T, Cheng T, Shen JM, Lv SY, Zhang HX (2014) Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice. Nanotoxicology 8:107–116CrossRefPubMedGoogle Scholar
  40. Zhang Y, Li JH, Liu XR, Jiang FL, Tian FF, Liu Y (2011) Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Membran Biol 241:39–49CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Chemistry and Environmental EngineeringYangtze UniversityJingzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations