The Journal of Membrane Biology

, Volume 249, Issue 5, pp 691–701 | Cite as

A Microdosimetric Study of Electropulsation on Multiple Realistically Shaped Cells: Effect of Neighbours

  • Agnese Denzi
  • Francesca Camera
  • Caterina Merla
  • Barbara Benassi
  • Claudia Consales
  • Alessandra Paffi
  • Francesca Apollonio
  • Micaela Liberti
Article

Abstract

Over the past decades, the effects of ultrashort-pulsed electric fields have been used to investigate their action in many medical applications (e.g. cancer, gene electrotransfer, drug delivery, electrofusion). Promising aspects of these pulses has led to several in vitro and in vivo experiments to clarify their action. Since the basic mechanisms of these pulses have not yet been fully clarified, scientific interest has focused on the development of numerical models at different levels of complexity: atomic (molecular dynamic simulations), microscopic (microdosimetry) and macroscopic (dosimetry). The aim of this work is to demonstrate that, in order to predict results at the cellular level, an accurate microdosimetry model is needed using a realistic cell shape, and with their position and packaging (cell density) characterised inside the medium.

Keywords

Microdosimetry Mesodosimetry Electroporation Nanosecond and microsecond pulsed electric fields Shielding effect 

References

  1. Bajorski P (2011) Statistics for imaging, optics, and photonics. Wiley, Sanford WeisbergCrossRefGoogle Scholar
  2. Benassi B, Filomeni G, Montagna C, Merla C, Lopresto V, Pinto R, Marino C, Consales C (2015) Extremely Low Frequency Magnetic Field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-parkinson’s disease toxin MPP+. Mol Neurobiol. doi:10.1007/s12035-015-9354-4 PubMedGoogle Scholar
  3. Bettan M, Ivanov MA, Mir LM, Boissière F, Delaere P, Scherman D (2000) Effic DNA Electrotrans into Tumors Bioelectrochem 52:83–90Google Scholar
  4. Breton M, Mir LM (2012) Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 33:106–123CrossRefPubMedGoogle Scholar
  5. Cadossi R, Ronchetti M, Cadossi M (2014) Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Futur Oncol 10:877–890CrossRefGoogle Scholar
  6. Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M (2014) A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100:11–17CrossRefPubMedGoogle Scholar
  7. Čorović S, Pavlin M, Miklavčič D (2007) Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online 6:37–50CrossRefPubMedPubMedCentralGoogle Scholar
  8. Denzi A, Merla C, Camilleri P, Paffi A, d’Inzeo G, Apollonio F, Liberti M (2013) Microdosimetric study for nanosecond pulsed electric fields on a cell circuit model with nucleus. J Membr Biol 246:761–767CrossRefPubMedGoogle Scholar
  9. Denzi A, Strigari L, Di Filippo F, Botti C, Di Filippo S, Perracchio L, Ronchetti M, Cadossi R, Liberti M (2015a) Modeling the positioning of single needle electrodes for the treatment of breast cancer in a clinical case. Biomed Eng Online 14(Suppl):3Google Scholar
  10. Denzi A, Merla C, Palego C, Paffi A, Ning Y, Multari CR, Cheng X, Apollonio F, Hwang JCM, Liberti M (2015b) Assessment of cytoplasm conductivity by nanosecond pulsed electric fields. IEEE Trans Biomed Eng 62:1595–1603CrossRefPubMedGoogle Scholar
  11. Ermolina I, Polevaya Y, Feldman Y (2000) Analysis of dielectric spectra of eukaryotic cells by computer modeling. Eur Biophys J 29:141–145CrossRefPubMedGoogle Scholar
  12. Esser AT, Smith KC, Gowrishankar TR, Weaver JC (2007) Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue. Technol Cancer Res Treat 6:261–273CrossRefPubMedGoogle Scholar
  13. Esser AT, Smith KC, Gowrishankar TR, Weaver JC (2009) Towards solid tumor treatment by nanosecond pulsed electric fields. Technol Cancer Res Treat 8:289–306CrossRefPubMedGoogle Scholar
  14. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall Upper Saddle River, New JerseyGoogle Scholar
  15. Gowrishankar TR, Weaver JC (2003) An approach to electrical modeling of single and multiple cells. Proc Natl Acad Sci USA 100:3203–3208CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349:643–653CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gowrishankar TR, Smith KC, Weaver JC (2013) Transport-based biophysical system models of cells for quantitatively describing responses to electric fields. Proc IEEE 101:505–517CrossRefGoogle Scholar
  18. Guo F, Yao C, Li C, Mi Y (2013) Simulation study of trans-membrane potential of plasma and nuclear membranes with frequency dispersion. Trans China Electrotech Soc 28:182–188Google Scholar
  19. Ho MC, Casciola M, Levine ZA, Vernier PT (2013) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B 117:11633–11640CrossRefPubMedGoogle Scholar
  20. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, CaliforniaGoogle Scholar
  21. Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62:4–20CrossRefPubMedGoogle Scholar
  22. Joshi RP, Hu Q (2011) Case for applying subnanosecond high-intensity, electrical pulses to biological cells. IEEE Trans Biomed Eng 58:2860–2866CrossRefPubMedGoogle Scholar
  23. Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense ultrashort pulses. Critical Reviews™. Biomed Eng 38(3):55–304Google Scholar
  24. Joshi RP, Mishra A, Schoenbach KH (2008) Model assessment of cell membrane breakdown in clusters and tissues under high-intensity electric pulsing. IEEE Trans Plasm Sci 36:1680–1688CrossRefGoogle Scholar
  25. Kotnik T, Miklavčič D (2000) Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields. Bioelectromagnetics 21:385–394CrossRefPubMedGoogle Scholar
  26. Kotnik T, Pucihar G, Miklavčič D (2010) Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 236:3–13CrossRefPubMedGoogle Scholar
  27. Merla C, Liberti M, Apollonio F, d’Inzeo G (2009) Quantitative assessment of dielectric parameters for membrane lipid bi-layer from RF permittivity measurements. Bioelectromagnetics 30:286–298CrossRefPubMedGoogle Scholar
  28. Merla C, Paffi A, Apollonio F, Leveque P, d’Inzeo G, Liberti M (2011) Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell. IEEE Trans Biomed Eng 58:1294–1302CrossRefPubMedGoogle Scholar
  29. Merla C, Denzi A, Paffi A, Casciola M, d’Inzeo G, Apollonio F, Liberti M (2012) Novel passive element circuits for microdosimetry of nanosecond pulsed electric fields. IEEE Trans Biomed Eng 59:2302–2311CrossRefPubMedGoogle Scholar
  30. Mezeme ME, Pucihar G, Pavlin M, Brosseau C, Miklavčič D (2012) A numerical analysis of multicellular environment for modeling tissue electroporation. Appl Phys Lett 100:143701CrossRefGoogle Scholar
  31. Miklavcic D, Puc M (2006) Electroporation, Wiley Encyclopedia of Biomedical Engineering. John Wiley, NewyorkGoogle Scholar
  32. Neal RE II, Davalos RV (2009) The feasibility of irreversible electroporation for the treatment of breast cancer and other heterogeneous systems. Ann Biomed Eng 37:2615–2625CrossRefPubMedGoogle Scholar
  33. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290CrossRefPubMedGoogle Scholar
  34. Pavlin M, Pavšelj N, Miklavčič D (2002) Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans Biomed Eng 49:605–612CrossRefPubMedGoogle Scholar
  35. Piuzzi E, Merla C, Cannazza G, Zambotti A, Apollonio F, Cataldo A, D’Attanasio P, De Benedetto E, Liberti M (2013) A comparative analysis between customized and commercial system for complex permittivity measurements on liquid samples at microwave frequencies. IEEE Trans Instrum Measurements 62:1034–1046CrossRefGoogle Scholar
  36. Polk C, Postov E (1995) Biological effects of electromagnetic fields. CRC handbook, 2nd edn. CRC, Boca RatonGoogle Scholar
  37. Pucihar G, Kotnik T, Valic B, Miklavcic D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells. Annals Biomed Eng 34:642–652CrossRefGoogle Scholar
  38. Pucihar G, Kotnik T, Teissié J, Miklavčič D (2007) Electropermeabilization of dense cell suspensions. Eur Biophys J 36:173–185CrossRefPubMedGoogle Scholar
  39. Pucihar G, Miklavcic D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–1501CrossRefPubMedGoogle Scholar
  40. Ramos A (2010) Improved numerical approach for electrical modeling of biological cell clusters. Med Biol Eng Comput 48:311–319CrossRefPubMedGoogle Scholar
  41. Smith KC, Gowrishankar TR, Esser AT, Stewart D, Weaver JC (2006) The spatially distributed dynamic transmembrane voltage of cells and organelles due to 10 ns pulses: meshed transport networks. IEEE Trans Plasm Sci 34:1394–1404CrossRefGoogle Scholar
  42. Susil R, Šemrov D, Miklavcic D (1998) Electric Field-Induced Transmembrane Potential Depends on Cell Density and Organization. Electromagn Biol Med 17:391–399Google Scholar
  43. Teissié J, Escoffre JM, Paganin A, Chabot S, Bellard E, Wasungu L, Rols MP, Golzio M (2012) Drug delivery by electropulsation: recent developments in oncology. Int J Pharm 423:3–6CrossRefPubMedGoogle Scholar
  44. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10CrossRefPubMedPubMedCentralGoogle Scholar
  45. Towhidi L, Kotnik T, Pucihar G, Firoozabadi SMP, Mozdarani H, Miklavcic D (2008) Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn Biol Med 27:372–385CrossRefPubMedGoogle Scholar
  46. Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR (2012) A brief overview of electroporation pulse strength–duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87:236–243CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Agnese Denzi
    • 1
    • 2
  • Francesca Camera
    • 2
  • Caterina Merla
    • 3
    • 4
  • Barbara Benassi
    • 3
  • Claudia Consales
    • 3
  • Alessandra Paffi
    • 2
  • Francesca Apollonio
    • 2
  • Micaela Liberti
    • 2
  1. 1.Center for Life Nano Science at SapienzaIstituto Italiano di TecnologiaRomeItaly
  2. 2.Department of Information Engineering, Electronics and Telecommunication (DIET), Italian Inter-University Centre of Electromagnetic Fields and Bio-Systems (ICEmB)University of Rome “La Sapienza”RomeItaly
  3. 3.Division of Health Protection Technologies, ENEA-Italian National Agency for New TechnologiesEnergy and Sustainable Economic DevelopmentRomeItaly
  4. 4.Vectorology and Anticancer Therapies, UMR 8203, CNRS, Gustave Roussy, Univ. Paris-SudUniversité Paris-SaclayVillejuifFrance

Personalised recommendations