The Journal of Membrane Biology

, Volume 249, Issue 5, pp 623–631 | Cite as

Abiotic Gene Transfer: Rare or Rampant?

Article

Abstract

Phylogenetic studies reveal that horizontal gene transfer (HGT) plays a prominent role in evolution and genetic variability of life. Five biotic mechanisms of HGT among prokaryotic organisms have been extensively characterized: conjugation, competence, transduction, gene transfer agent particles, and transitory fusion with recombination, but it is not known whether they can account for all natural HGT. It is even less clear how HGT could have occurred before any of these mechanisms had developed. Here, we consider contemporary conditions and experiments on microorganisms to estimate possible roles of abiotic HGT—currently and throughout evolution. Candidate mechanisms include freeze-and-thaw, microbeads-agitation, and electroporation-based transformation, and we posit that these laboratory techniques have analogues in nature acting as mechanisms of abiotic HGT: freeze-and-thaw cycles in polar waters, agitation by sand at foreshores and riverbeds, and lightning-triggered electroporation in near-surface aqueous habitats. We derive conservative order-of-magnitude estimates for rates of microorganisms subjected to freeze-and-thaw cycles, sand agitation, and lightning-triggered electroporation, at 1024, 1019, and 1017 per year, respectively. Considering the yield of viable transformants, which is by far the highest in electroporation, we argue this may still favor lightning-triggered transformation over the other two mechanisms. Electroporation-based gene transfer also appears to be the most general of these abiotic candidates, and perhaps even of all known HGT mechanisms. Future studies should provide improved estimates of gene transfer rates and cell viability, currently and in the past, but to assess the importance of abiotic HGT in nature will likely require substantial progress—also in knowledge of biotic HGT.

Keywords

Horizontal gene transfer Evolution Freeze-and-thaw transformation Sand-agitation transformation Lightning-triggered transformation Electrotransformation 

References

  1. Alvarez UM, Ramirez A, Fernandez F, Mendez A, Loske AM (2008) The influence of single-pulse and tandem shock waves on bacteria. Shock Waves 17:441–447. doi:10.1007/s00193-008-0125-2 CrossRefGoogle Scholar
  2. Anderson RB, Eriksson AJ (1980) Lightning parameters for engineering application. Electra 69:65–102Google Scholar
  3. Aune TEV, Aachmann FL (2010) Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl Microbiol Biotechnol 85:1301–1313. doi:10.1007/s00253-009-2349-1 CrossRefPubMedGoogle Scholar
  4. Bandin I, Dopazo CP (2011) Host range, host specificity and hypothesized host shifts among viruses of lower vertebrates. Vet Res 42(67):1–15. doi:10.1186/1297-9716-42-67 Google Scholar
  5. Bapteste E, O’Malley MA, Beiko R et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4(34):1–20. doi:10.1186/1745-6150-4-34 Google Scholar
  6. Berger K, Anderson RB, Kroninger H (1975) Parameters of lightning flashes. Electra 41:23–37Google Scholar
  7. Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc B 277:819–827. doi:10.1098/rspb.2009.1679 CrossRefPubMedGoogle Scholar
  8. Brochier-Armanet C, Moreira D (2015) Horizontal gene transfer in microbial ecosystems. In: Bertrand JC (ed) Environmental microbiology: fundamentals and applications. Springer, Dordrecht, pp 445–484. doi:10.1007/978-94-017-9118-2_12 Google Scholar
  9. Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. J Cell Biol 11:2328–2332Google Scholar
  10. Cann AJ (2015) Principles of molecular virology, 6th edn. Academic Press, London, pp 112–119. doi:10.1016/B978-0-12-801946-7.00004-3 Google Scholar
  11. Chassy BM, Flickinger JL (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol Lett 44:173–177CrossRefGoogle Scholar
  12. Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science 310:1456–1460. doi:10.1126/science.1114021 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chowdhuri P, Anderson JG, Chisholm WA et al (2005) Parameters of lightning strokes: a review. IEEE Trans Power Deliver 20:346–358. doi:10.1109/TPWRD.2004.835039 CrossRefGoogle Scholar
  14. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114. doi:10.1073/pnas.69.8.2110 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Coll JM (2006) Methodologies for transferring DNA into eukaryotic microalgae. Span J Agric Res 4:316–330. doi:10.5424/sjar/2006044-209 CrossRefGoogle Scholar
  16. Costanzo M, Fox TD (1988) Transformation of yeast by agitation with glass beads. Genetics 120:667–670PubMedPubMedCentralGoogle Scholar
  17. Dityatkin SY, Lisovskaya KV, Panzhava NN, Iliashenko BN (1972) Frozen-thawed bacteria as recipients of isolated coliphage DNA. Biochim Biophys Acta 281:319–323. doi:10.1016/0005-2787(72)90444-3 CrossRefPubMedGoogle Scholar
  18. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128. doi:10.1126/science.284.5423.2124 CrossRefPubMedGoogle Scholar
  19. Doolittle RF, Feng DF, Anderson KL, Alberro MR (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31:383–388. doi:10.1007/BF02106053 CrossRefPubMedGoogle Scholar
  20. Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600. doi:10.1016/j.cell.2011.01.015 CrossRefPubMedGoogle Scholar
  21. Griffith F (1928) The significance of pneumococcal types. J Hyg Lond 27:113–159. doi:10.1017/S0022172400031879 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guglielmini J, de la Cruz F, Rocha EPC (2013) Evolution of conjugation and type IV secretion systems. Mol Biol Evol 30:315–331. doi:10.1093/molbev/mss221 CrossRefPubMedGoogle Scholar
  23. Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E (2010) Network analyses structure genetic diversity in independent genetic worlds. Proc Natl Acad Sci USA 107:127–132. doi:10.1073/pnas.0908978107 CrossRefPubMedGoogle Scholar
  24. Han YW, Ikegami A, Chung P, Zhang L, Deng CX (2007) Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in Fusobacterium nucleatum. Appl Environ Microbiol 73:3677–3683. doi:10.1128/AEM.00428-07 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hashimoto H, Morikawa H, Yamada Y, Kimura A (1985) A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl Microbiol Biotechnol 21:336–339CrossRefGoogle Scholar
  26. Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga Chlorella. Curr Microbiol 38:335–341CrossRefPubMedGoogle Scholar
  27. Heinemann JA, Sprague GF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209. doi:10.1038/340205a0 CrossRefPubMedGoogle Scholar
  28. Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31:111–119. doi:10.1016/0303-2647(93)90038-E CrossRefPubMedGoogle Scholar
  29. Holsters M, Dewaele D, Depicker A et al (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187. doi:10.1007/BF00267408 CrossRefPubMedGoogle Scholar
  30. Jagadeesh G, Nataraja KN, Udayakumar M (2004) Shock waves can enhance bacterial transformation with plasmid DNA. Curr Sci India 87:734–735Google Scholar
  31. Johnsborg O, Eldholm V, Håvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms, and function. Res Microbiol 158:767–778. doi:10.1016/j.resmic.2007.09.004 CrossRefPubMedGoogle Scholar
  32. Kaye GWC, Laby TH (1995) Tables of physical and chemical constants, 16th edn. http://www.kayelaby.npl.co.uk/
  33. Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618. doi:10.1038/nrg2386 CrossRefPubMedGoogle Scholar
  34. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232. doi:10.1073/pnas.87.3.1228 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kolling GL, Matthews KR (1999) Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol 65:1843–1848PubMedPubMedCentralGoogle Scholar
  36. Koonin EV (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res 37:1011–1034. doi:10.1093/nar/gkp089 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Koskella B, Meaden S (2013) Understanding bacteriophage specificity in natural microbial communities. Viruses 5:806–823. doi:10.3390/v5030806 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kotnik T (2013a) Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys Life Rev 10:351–370. doi:10.1016/j.plrev.2013.05.001 CrossRefPubMedGoogle Scholar
  39. Kotnik T (2013b) Prokaryotic diversity, electrified DNA, lightning waveforms, abiotic gene transfer, and the Drake equation: assessing the hypothesis of lightning-driven evolution. Phys Life Rev 10:384–388. doi:10.1016/j.plrev.2013.07.027 CrossRefPubMedGoogle Scholar
  40. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2010) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19. doi:10.1016/j.tim.2009.11.003 CrossRefPubMedGoogle Scholar
  41. Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10:472–482. doi:10.1038/nrmicro2802 PubMedPubMedCentralGoogle Scholar
  42. Lauer U, Bürgelt E, Squire Z et al (1997) Shock wave permeabilization as a new gene transfer method. Gene Ther 4:710–715. doi:10.1038/sj.gt.3300462 CrossRefPubMedGoogle Scholar
  43. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417. doi:10.1073/pnas.95.16.9413 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lederberg E, Cohen SN (1974) Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol 119:1072–1074PubMedPubMedCentralGoogle Scholar
  45. Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158:558. doi:10.1038/158558a0 CrossRefPubMedGoogle Scholar
  46. Lee RC, Zhang D, Hannig J (2000) Biophysical injury mechanisms in electrical shock trauma. Annu Rev Biomed Eng 2:477–509. doi:10.1146/annurev.bioeng.2.1.477 CrossRefPubMedGoogle Scholar
  47. Lipscomb GL, Stirrett K, Schut GJ et al (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation. Appl Environ Microbiol 77:2232–2238. doi:10.1128/AEM.02624-10 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602PubMedPubMedCentralGoogle Scholar
  49. Loske AM, Campos-Guillen J, Fernández F, Castaño-Tostado E (2011) Enhanced shock wave-assisted transformation of Escherichia coli. doi:10.1016/j.ultrasmedbio.2010.12.002 Google Scholar
  50. Luo Y, Wasserfallen A (2001) Gene transfer systems and their applications in archaea. Syst Appl Microbiol 24:15–25. doi:10.1078/0723-2020-00005 CrossRefPubMedGoogle Scholar
  51. Magaña-Ortiz D, Coconi-Linares N, Ortiz-Vazquez E et al (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16. doi:10.1016/j.fgb.2013.03.008 CrossRefPubMedGoogle Scholar
  52. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162. doi:10.1016/0022-2836(70)90051-3 CrossRefPubMedGoogle Scholar
  53. Marrs B (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71:971–973. doi:10.1073/pnas.71.3.971 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846. doi:10.1111/j.1365-2958.2006.05272.x CrossRefPubMedGoogle Scholar
  55. McDaniel LD, Young E, Delaney J et al (2010) High frequency of horizontal gene transfer in the oceans. Science 330:50. doi:10.1126/science.1192243 CrossRefPubMedGoogle Scholar
  56. McNeil PL, Murphy RF, Lanni F, Taylor DL (1984) A method for incorporating macromolecules into adherent cells. J Cell Biol 98:1556–1564. doi:10.1083/jcb.98.4.1556 CrossRefPubMedGoogle Scholar
  57. Merrick MJ, Gibbins JR, Postgate JR (1987) A rapid and efficient method for plasmid transformation of Klebsiella pneumoniae and Escherichia coli. J Gen Microbiol 133:2053–2057PubMedGoogle Scholar
  58. Micheletti PA, Sment KA, Konisky J (1991) Isolation of a coenzyme M-auxotrophic mutant and transformation by electroporation in Methanococcus voltae. J Bacteriol 173:3414–3418PubMedPubMedCentralGoogle Scholar
  59. Nakawo M, Sinha NK (1981) Growth rate and salinity profile of first-year sea ice in the High Arctic. J Glaciol 27:315–330Google Scholar
  60. Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U (2012) Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr Biol 22:1444–1448. doi:10.1016/j.cub.2012.05.056 CrossRefPubMedGoogle Scholar
  61. Nickoloff JA (ed) (1995) Electroporation protocols for microorganisms, vol 47., Methods in molecular biologySpringer, New York, pp 13–67. doi:10.1385/0896033104 Google Scholar
  62. NOAA—National Centers for Environmental Information (2015) Global snow and ice reports, 2002–2015. https://www.ncdc.noaa.gov/sotc/global-snow/
  63. NSIDC—National Snow and Ice Data Center (2015) All about sea ice. https://nsidc.org/cryosphere/seaice/index.html
  64. Overballe-Petersen S, Harms K, Orlando LAA et al (2013) Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci USA 110:19860–19865. doi:10.1073/pnas.1315278110 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Papke RT, Corral P, Ram-Mohan N et al (2015) Horizontal gene transfer, dispersal and haloarchaeal speciation. Life 5:1405–1426. doi:10.3390/life5021405 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Poul MA, Marks JS (1999) Targeted gene delivery to mammalian cells by filamentous bacteriophage. J Mol Biol 288:203–211. doi:10.1006/jmbi.1999.2678 CrossRefPubMedGoogle Scholar
  67. Renelli M, Matias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:2161–2169. doi:10.1099/mic.0.26841-0 CrossRefPubMedGoogle Scholar
  68. Rivera AL, Magaña-Ortíz D, Gómez-Lim M, Fernández F, Loske AM (2014) Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 11:184–203. doi:10.1016/j.plrev.2014.01.007 CrossRefGoogle Scholar
  69. Rosenshine I, Tchelet R, Mevarech M (1989) The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245:1387–1389. doi:10.1126/science.2818746 CrossRefPubMedGoogle Scholar
  70. Schwartz ML (2005) Encyclopedia of coastal science, preface. Springer, Dordrecht, p xxxvCrossRefGoogle Scholar
  71. Shivarova N, Förster W, Jacob HE, Grigorova R (1983) Microbiological implications of electric field effects: VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses. Z Allg Mikrobiol 23:595–599. doi:10.1002/jobm.3630230915 CrossRefGoogle Scholar
  72. Smets BF, Barkay T (2005) Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev Microbiol 3:675–678. doi:10.1038/nrmicro1253 CrossRefPubMedGoogle Scholar
  73. Smith MW, Feng DF, Doolittle RF (1992) Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci 17:489–493. doi:10.1016/0968-0004(92)90335-7 CrossRefPubMedGoogle Scholar
  74. Stepanov AS, Puzanova OB, Dityatkin SY, Loginova OG, Ilyashenko BN (1990) Glycine-induced cryotransformation of plasmids into Bacillus anthracis. J Gen Microbiol 136:1217–1221CrossRefPubMedGoogle Scholar
  75. Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev Genet 46:341–358. doi:10.1146/annurev-genet-110711-155529 CrossRefPubMedGoogle Scholar
  76. Talling JF, Talling IB (1965) The chemical composition of African lake waters. Int Rev Ges Hydrobiol 50:421–463CrossRefGoogle Scholar
  77. Tam LW, Lefevre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135:375–384PubMedPubMedCentralGoogle Scholar
  78. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721. doi:10.1038/nrmicro1234 CrossRefPubMedGoogle Scholar
  79. Tison JL, Worby A, Delille B et al (2008) Temporal evolution of decaying summer first-year sea ice in the Western Weddell Sea, Antarctica. Deep-Sea Res II 55:975–987. doi:10.1016/j.dsr2.2007.12.021 CrossRefGoogle Scholar
  80. Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228PubMedGoogle Scholar
  81. Waters VL (2001) Conjugation between bacterial and mammalian cells. Nat Genet 29:375–376. doi:10.1038/ng779 CrossRefPubMedGoogle Scholar
  82. Weaver JC (2013) Estimating the contribution of lightning to microbial evolution: guidance from the Drake equation. Comment on “Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer” by Tadej Kotnik. Phys Life Rev 10:373–376. doi:10.1016/j.plrev.2013.07.030 CrossRefPubMedGoogle Scholar
  83. Weiss AA, Falkow S (1982) Plasmid transfer to Bordetella pertussis: conjugation and transformation. J Bacteriol 152:549–552PubMedPubMedCentralGoogle Scholar
  84. Weston A, Brown MGM, Perkins HR et al (1981) Transformation of Escherichia coli with plasmid deoxyribonucleic acid: calcium induced binding of deoxyribonucleic acid to whole cells and to isolated membrane fractions. J Bacteriol 145:780–787PubMedPubMedCentralGoogle Scholar
  85. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583. doi:10.1073/pnas.95.12.6578 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yaron S, Kolling GL, Simon L, Matthews KR (2000) Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol 66:4414–4420. doi:10.1128/AEM.66.10.4414-4420.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhaxybayeva O, Gogarten JP (2004) Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet 20:182–187. doi:10.1016/j.tig.2004.02.004 CrossRefPubMedGoogle Scholar
  88. Zibat A (2001) Efficient transformation of Halobacterium salinarum by a “freeze and thaw” technique. Biotechniques 31:1010–1012PubMedGoogle Scholar
  89. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699PubMedPubMedCentralGoogle Scholar
  90. Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28. doi:10.1046/j.1365-313x.2000.00808.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations