Advertisement

The Journal of Membrane Biology

, Volume 249, Issue 4, pp 475–481 | Cite as

Trypanosoma cruzi Polyamine Transporter: Its Role on Parasite Growth and Survival Under Stress Conditions

  • Chantal Reigada
  • Melisa Sayé
  • Edward Valera Vera
  • Darío Balcazar
  • Laura Fraccaroli
  • Carolina Carrillo
  • Mariana R. Miranda
  • Claudio A. PereiraEmail author
Article

Abstract

Trypanosoma cruzi is the etiological agent of Chagas disease, a major health problem in Latin America. Polyamines are polycationic compounds that play a critical role as regulators of cell growth and differentiation. In contrast with other protozoa, T. cruzi is auxotrophic for polyamines because of its inability to synthesize putrescine due to the lack of both, arginine and ornithine decarboxylase; therefore, the intracellular availability of polyamines depends exclusively on transport processes. In this work, the polyamine transporter TcPAT12 was overexpressed in T. cruzi epimastigotes demonstrating that growth rates at different concentrations of polyamines strongly depend on the regulation of the polyamine transport. In addition, parasites overexpressing TcPAT12 showed a highly increased resistance to hydrogen peroxide and the trypanocidal drugs nifurtimox and benznidazole, which act by oxidative stress and interfering the synthesis of polyamine derivatives, respectively. Finally, the presence of putative polyamine transporters was analyzed in T. cruzi, Trypanosoma brucei, and Leishmania major genomes identifying 3–6 genes in these trypanosomatids.

Keywords

Trypanosoma cruzi Polyamine transporter Chagas disease 

Notes

Acknowledgments

Special thanks to Lic. Fabio di Girolamo (IDIM-CONICET) for technical support. This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 2011-0263, and 2013-0664), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT PICT 2012-0559 and 2013-2218). CAP and MRM are members of the career of scientific investigator; CR, MS, and EVV are research fellows from CONICET.

Supplementary material

232_2016_9888_MOESM1_ESM.pdf (9 kb)
Supplementary material 1 (PDF 9 kb)
232_2016_9888_MOESM2_ESM.pdf (64 kb)
Supplementary material 2 (PDF 63 kb)
232_2016_9888_MOESM3_ESM.pdf (141 kb)
Supplementary material 3 (PDF 140 kb)

References

  1. Aiyar A (2000) The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment. Methods Mol Biol 132:221–241PubMedGoogle Scholar
  2. Alcazar R, Tiburcio AF (2014) Plant polyamines in stress and development: an emerging area of research in plant sciences. Front Plant Sci 5:319CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Bacchi CJ, Vergara C, Garofalo J, Lipschik GY, Hutner SH (1979) Synthesis and content of polyamines in bloodstream Trypanosma brucei. J Protozool 26:484–488CrossRefPubMedGoogle Scholar
  5. Bacchi CJ, Nathan HC, Hutner SH, McCann PP, Sjoerdsma A (1980) Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210:332–334CrossRefPubMedGoogle Scholar
  6. Bachrach U, Brem S, Wertman SB, Schnur LF, Greenblatt CL (1979) Leishmania spp.: cellular levels and synthesis of polyamines during growth cycles. Exp Parasitol 48:457–463CrossRefPubMedGoogle Scholar
  7. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucl Acids Res 34:W369–W373CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S (2003) The trypanosomiases. Lancet 362:1469–1480CrossRefPubMedGoogle Scholar
  9. Bouvier LA, Silber AM, Galvao Lopes C, Canepa GE, Miranda MR, Tonelli RR, Colli W, Alves MJ, Pereira CA (2004) Post genomic analysis of permeases from the amino acid/auxin family in protozoan parasites. Biochem Biophys Res Commun 321:547–556CrossRefPubMedGoogle Scholar
  10. Brun R, Schonenberger M (1979) Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop 36:289–292PubMedGoogle Scholar
  11. Camargo EP (1964) Growth and differentiation in Trypanosoma Cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100PubMedGoogle Scholar
  12. Carrillo C, Cejas S, Gonzalez NS, Algranati ID (1999) Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzyme. FEBS Lett 454:192–196CrossRefPubMedGoogle Scholar
  13. Carrillo C, Cejas S, Huber A, Gonzalez NS, Algranati ID (2003) Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes. J Eukaryot Microbiol 50:312–316CrossRefPubMedGoogle Scholar
  14. Carrillo C, Canepa GE, Algranati ID, Pereira CA (2006) Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi. Biochem Biophys Res Commun 344:936–940CrossRefPubMedGoogle Scholar
  15. Chagas C (1909) Nova Tripanosomiaze Humana: estudos sobre amorfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de uma nova entidade mórbida do homem. Mem Inst Oswaldo Cruz 1:159–218CrossRefGoogle Scholar
  16. Colotti G, Ilari A (2011) Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 40:269–285CrossRefPubMedGoogle Scholar
  17. Cupello MP, Souza CF, Buchensky C, Soares JB, Laranja GA, Coelho MG, Cricco JA, Paes MC (2011) The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters. Acta Trop 120:211–218CrossRefPubMedGoogle Scholar
  18. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227:1485–1487CrossRefPubMedGoogle Scholar
  19. Hall BS, Bot C, Wilkinson SR (2011) Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem 286:13088–13095CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hasne MP, Coppens I, Soysa R, Ullman B (2010) A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 76:78–91CrossRefPubMedPubMedCentralGoogle Scholar
  21. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564CrossRefPubMedGoogle Scholar
  22. Magnes C, Fauland A, Gander E, Narath S, Ratzer M, Eisenberg T, Madeo F, Pieber T, Sinner F (2014) Polyamines in biological samples: rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography-tandem mass spectrometry. J Chromatogr A 1331:44–51CrossRefPubMedPubMedCentralGoogle Scholar
  23. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  24. Pereira CA, Alonso GD, Paveto MC, Flawia MM, Torres HN (1999) L-arginine uptake and L-phosphoarginine synthesis in Trypanosoma cruzi. J Eukaryot Microbiol 46:566–570CrossRefPubMedGoogle Scholar
  25. Pereira CA, Alonso GD, Ivaldi S, Silber AM, Alves MJ, Torres HN, Flawia MM (2003) Arginine kinase overexpression improves Trypanosoma cruzi survival capability. FEBS Lett 554:201–205CrossRefPubMedGoogle Scholar
  26. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402CrossRefPubMedGoogle Scholar
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  28. Trochine A, Creek DJ, Faral-Tello P, Barrett MP, Robello C (2014) Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl Trop Dis 8:e2844CrossRefPubMedPubMedCentralGoogle Scholar
  29. Vazquez MP, Levin MJ (1999) Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 239:217–225CrossRefPubMedGoogle Scholar
  30. Young GB, Jack DL, Smith DW, Saier MH Jr (1999) The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415:306–322CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chantal Reigada
    • 1
  • Melisa Sayé
    • 1
  • Edward Valera Vera
    • 1
  • Darío Balcazar
    • 2
  • Laura Fraccaroli
    • 2
  • Carolina Carrillo
    • 2
  • Mariana R. Miranda
    • 1
  • Claudio A. Pereira
    • 1
    Email author
  1. 1.Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas “Alfredo Lanari”Universidad de Buenos Aires and CONICETBuenos AiresArgentina
  2. 2.Instituto de Ciencias y Tecnología “Dr. César Milstein”CONICETBuenos AiresArgentina

Personalised recommendations