Advertisement

The Journal of Membrane Biology

, Volume 249, Issue 3, pp 411–417 | Cite as

In Situ Investigation of Peptide–Lipid Interaction Between PAP248–286 and Model Cell Membranes

  • Khoi Tan NguyenEmail author
Article

Abstract

Sum frequency generation vibrational spectroscopy (SFG) was utilized to investigate the interaction between PAP248–286 and the two lipid bilayer systems. The present study also provides spectroscopic evidence to confirm that, although PAP248–286 is unable to penetrate into the hydrophobic core of the lipid bilayers, it is capable of interacting more intimately with the fluid-phase POPG/POPC than with the gel-phase DPPG/DPPC lipid bilayer. The helical structure content of lipid-bound PAP248–286 was also observed to be high, in contrast to the results previously reported using nuclear magnetic resonance (NMR). Collectively, our SFG data suggest that lipid-bound PAP248–286 actually resembles its structure in 50 % 2,2,2-trifluoroethanol better than the structure when the peptide binds to SDS micelles. This present study questions the use of SDS micelles as the model membrane for NMR studies of PAP248–286 due to its protein denaturing activity.

Keywords

Gel-phase and fluid-phase model lipid bilayers PAP248–286 Peptide conformation SDS micelles 

Notes

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 106.16-2012.67. The author sincerely thanks Dr. Gay Marsden for her generous assistance in the manuscript preparation.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

232_2016_9878_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 34 kb)

References

  1. Arnold F, Schnell J, Zirafi O, Sturzel C, Meier C, Weil T, Standker L, Forssmann WG, Roan NR, Greene WC, Kirchhoff F, Munch J (2012) Naturally occurring fragments from two distinct regions of the prostatic acid phosphatase form amyloidogenic enhancers of HIV infection. J Virol 86:1244–1249CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baio JE, Weidner T, Ramey D, Pruzinsky L, Castner DG (2013) Probing the orientation of electrostatically immobilized cytochrome C by time of flight secondary ion mass spectrometry and sum frequency generation spectroscopy. Biointerphases 8:18CrossRefPubMedPubMedCentralGoogle Scholar
  3. Belkin MA, Kulakov TA, Ernst KH, Yan L, Shen YR (2000) Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality. Phys Rev Lett 85:4474–4477CrossRefPubMedGoogle Scholar
  4. Brender JR, Hartman K, Gottler LM, Cavitt ME, Youngstrom DW, Ramamoorthy A (2009) Helical conformation of the SEVI precursor peptide PAP(248-286), a dramatic enhancer of HIV infectivity, promotes lipid aggregation and fusion. Biophys J 97:2474–2483CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brender JR, Nanga RPR, Popovych N, Soong R, Macdonald PM, Ramamoorthy A (2011) The amyloidogenic SEVI precursor, PAP248-286, is highly unfolded in solution despite an underlying helical tendency. Bba-Biomembranes 1808:1161–1169CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen XY, Wang J, Kristalyn CB, Chen Z (2007) Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Biophys J 93:866–875CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ding B, Soblosky L, Nguyen K, Geng JQ, Yu XL, Ramamoorthy A, Chen Z (2013) Physiologically-relevant modes of membrane interactions by the human antimicrobial peptide, LL-37, revealed by SFG experiments. Sci Rep-UK 3:1854Google Scholar
  8. Easterhoff D, DiMaio JTM, Doran TM, Dewhurst S, Nilsson BL (2011) Enhancement of HIV-1 infectivity by simple, self-assembling modular peptides. Biophys J 100:1325–1334CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fu L, Liu J, Yan ECY (2011) Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces. J Am Chem Soc 133:8094–8097CrossRefPubMedGoogle Scholar
  10. Haro A, Velez M, Goormaghtigh E, Lago S, Vazquez J, Andreu D, Gasset M (2003) Reconstitution of holin activity with a synthetic peptide containing the 1-32 sequence region of edh, the EJ-1 phage holin. J Biol Chem 278:3929–3936CrossRefPubMedGoogle Scholar
  11. Liu J, Conboy JC (2005) 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J 89:2522–2532CrossRefPubMedPubMedCentralGoogle Scholar
  12. Mauri S, Weidner T, Arnolds H (2014) The structure of insulin at the air/water interface: monomers or dimers? Phys Chem Chem Phys 16:26722–26724CrossRefPubMedGoogle Scholar
  13. Munch J, Rucker E, Standker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A, Gimenez-Gallego G, Sanchez PC, Fowler DM, Koulov A, Kelly JW, Mothes W, Grivel JC, Margolis L, Keppler OT, Forssmann WG, Kirchhoff F (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131:1059–1071CrossRefPubMedGoogle Scholar
  14. Nanga RPR, Brender JR, Vivekanandan S, Popovych N, Ramamoorthy A (2009) NMR structure in a membrane environment reveals putative amyloidogenic regions of the SEVI precursor peptide PAP(248-286). J Am Chem Soc 131:17972–17979CrossRefPubMedPubMedCentralGoogle Scholar
  15. Nguyen KT (2015) An electronically enhanced chiral sum frequency generation vibrational spectroscopy study of lipid-bound cytochrome c. Chem Commun 51:195–197CrossRefGoogle Scholar
  16. Nguyen KT, Le Clair SV, Ye SJ, Chen Z (2009) Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy. J Phys Chem B 113:12169–12180CrossRefPubMedPubMedCentralGoogle Scholar
  17. Nguyen KT, King JT, Chen Z (2010a) Orientation Determination of interfacial beta-sheet structures in situ. J Phys Chem B 114:8291–8300CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nguyen KT, Soong R, Im SC, Waskell L, Ramamoorthy A, Chen Z (2010b) Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy. J Am Chem Soc 132:15112–15115CrossRefPubMedPubMedCentralGoogle Scholar
  19. Olsen JS, DiMaio JTM, Doran TM, Brown C, Nilsson BL, Dewhurst S (2012) Seminal plasma accelerates semen-derived enhancer of viral infection (SEVI) fibril formation by the prostatic acid phosphatase (PAP(248-286)) peptide. J Biol Chem 287:11842–11849CrossRefPubMedPubMedCentralGoogle Scholar
  20. Roan NR, Muller JA, Liu HC, Chu S, Arnold F, Sturzel CM, Walther P, Dong M, Witkowska HE, Kirchhoff F, Munch J, Greene WC (2011) Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 10:541–550CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rusert P, Fischer M, Joos B, Leemann C, Kuster H, Flepp M, Bonhoeffer S, Gunthard HF, Trkola A (2004) Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol. Virology 326:113–129CrossRefPubMedGoogle Scholar
  22. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Bba-Biomembr 1666:105–117CrossRefGoogle Scholar
  23. Tulumello DV, Deber CM (2009) SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochem-US 48:12096–12103CrossRefGoogle Scholar
  24. Volkov V, Bonn M (2013) Structural properties of gp41 fusion peptide at a model membrane interface. J Phys Chem B 117:15527–15535CrossRefPubMedGoogle Scholar
  25. Wang J, Chen XY, Clarke ML, Chen Z (2005) Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. P Natl Acad Sci USA 102:4978–4983CrossRefGoogle Scholar
  26. Wang J, Lee SH, Chen Z (2008) Quantifying the ordering of adsorbed proteins in situ. J Phys Chem B 112:2281–2290CrossRefPubMedGoogle Scholar
  27. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Bba-Biomembr 1808:1957–1974CrossRefGoogle Scholar
  28. Weidnerw T, Castner DG (2013) SFG analysis of surface bound proteins: a route towards structure determination. Phys Chem Chem Phys 15:12516–12524CrossRefGoogle Scholar
  29. Yan ECY, Fu L, Wang ZG, Liu W (2014) Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem Rev 114:8471–8498CrossRefPubMedGoogle Scholar
  30. Ye SJ, Nguyen KT, Chen Z (2010) Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. J Phys Chem B 114:3334–3340CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ye SJ, Li HC, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z (2012) Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. J Am Chem Soc 134:6237–6243CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ye SJ, Li HC, Yang WL, Luo Y (2014) Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals. J Am Chem Soc 136:1206–1209CrossRefPubMedGoogle Scholar
  33. Zhang C, Jasensky J, Leng C, Del Grosso C, Smith GD, Wilker JJ, Chen Z (2014) Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces. Opt Lett 39:2715–2718CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.School of BiotechnologyInternational University, Vietnam National University Ho Chi Minh CityVietnam

Personalised recommendations